INVERTER

Model

FR-D700

GLOBAL STANDARD

Mitsubishi Electric Corporation Nagoya Works is a factory certified for ISO14001 (standards for environmental management systems) and ISO9001(standards for quality assurance managememt systems)

GLObAL STANDARD

- Features

1 New standard of inverter

Highly reliable inverter!

Spring clamp terminal (control circuit terminal)
With spring terminals, the wiring became easier and more secure.

With spring terminals, the wirin

Long-life design

- The design life of the cooling fan has been extended to 10 years ${ }^{41}$. The life of the fan can be further extended utilizing the it's ON/OFF control
The design life of the capacitors has been extended to 10 years by the adoption of a capacitor endures 5000 hours at $105^{\circ} \mathrm{C}$ surrounding air temperature ${ }^{4},{ }^{2}$.
: Surrounding air temperature: annuaraverage 40 C C (ree trom corrosive gas, 2: Output current: :80\% of the
2: Output current: : 80\% of the inverter rated current
Life indication of critical components

- Highly reliable

Spring structure in terminal contact section inside prevents contact fault by vibration.

- Maintenance is unnecessary Screw retightening is unnecessary

(4) Leading life check function

Degrees of deterioration of main circuit capacitor, control circuit capacitor, and inrush current limit circuit can be monitored.
Trouble can be avoided with the self-diagnostic alarm ${ }^{* 4}$ that is output when the life span is near.
44: It any one of main circuit capacitor, control circuit capacitor, inush current restriction
circuit or coooling tan reaches the output tevel, an anarm is is outout. Capacity of the main
 power from oft 10 on. Measuring the capacity enables alarm to be output.
The cooling fan outputs alarm by using tan speed delection.
(5) Password function
 Registering 4-digit password can limit parameter read/write. It is effective for parameter setting protection.

2 Mitsubishi's new standard ${ }_{\text {Asoratamizeose }}$

 Compact yet equipped with highest level of function/performance!! -purpose magnetic flux vector control
General-purpose magnetic flux vector control and auto tuning function are available.
It ensures operation that requires high starting torque, such as transfer machine including conveyer, hoist, lift, etc., washing machine, and agitators.

- High torque $150 \% / 1 \mathrm{~Hz}$ and $200 \% / 3 \mathrm{~Hz}$ (3.7K or less) are achieved with slip compensation function.

Auto tuning

Many kinds of motors can be optimally controlled with Mitsubishi original "non-rotation "auto tuning function (R1 constants tuning)

Enhanced function
New functions and useful functions from superior models support all sorts of applications.

Regeneration avoidance function For a pressing machine and fan rotated faster than the set speed due to the effect of another fan, a trip is less likely to occur by automatically ncreasing frequency at egeneration.

(2) Brake resistor can be connected

A brake transistor is built-in to the 0.4 K or more. Connecting an optional brake resistor increases
regeneration capability.
It is useful for deceleration time reduction of a machine with a large inertia, such as fan, and operation of lift, etc.

Optimum excitation control This control enables the motor efficiency to its optimum. More energy saving is possible in applications with variable load torque characteristic such as fan and pump.

Power failure-time deceleration-to-stop function The motor can be decelerated to a stop when a power failure or undervoltage occur to prevent the motor from coasting
For fail-safe of machine tool, etc., it is effective to stop the motor when a power failure occurs.

Entering position detection signal of dancer roll to use PID control enables tension control by dancer roll.

Traverse function

Traverse function for wind-up drum of spinning machine and wiredrawing machine prevents unevenness and deformation at thread winding

Standard

Standard
specifications

- Outline
 dimension

drawings

- Terminal connection
diagram
- Terminal specification
explandion
- Operation panel

Operation panel

- Parameter list

Protective
functions

- Option and
peripheral devices
- Precautions for
operation/selection
- Peecalions sorperipheral - Preaations sop peipinerar
device esection

FR-D700 Series
FR-DTOO Series
Specification
Difference List

- Warranty
- International

FA Center

[ex

3 Easy use and time saving built-in as standard

(1) Quick setup with the setting dial

Setting dial is the feature of Mitsubishi inverters.

- Displayed numbers can be jumped by turning the setting dial quickly, and numbers can be changed one by one by turning it slowly, enabling speedy parameter setting The nonslip setting dial is easier to turn

Easy setting from a personal computer using the FR Configurator (option)
Connecting a personal computer and the inverter via RS-485 communication enables setting with wizard (interactive) function of the FR Configurator (inverter setup software). In addition, a parameter setting can be converted from the FRS500 series to the FR-D700 series by "Convert" function. Graph" function displays monitor data in waveform.

Setting wizard function (example: acceleration/deceleration time setting)

3) Enclosure surface operation panel FR-PA07 (option)
Optional enclosure surface operation panel (FR-PA07) can be connected. In addition, an operation panel for the FR-E500 series can be connected.
The opeation paneol of the iveeter can notberemoved.

(4) P4) Parameter unit FR-PU07 (option) An optional parameter unit (FR-PUO7) can be connected as well.

-Seting such as direct input method with a numeric keypad, operation status indication, and help function are usable.
Eight languages can be displayed
Parameter seting values of maximum of three inverters can be stored.
A battery pack type (FR-PUO7BB-LL) allows parameter setting and parameter copy withou powering on the inverter. (available soon)
 has Lathe eno).
(5) Enhanced communication function -Mitsubishi inverter protocol and Modbus-RTU Communication speed of RS-485 has been improved (communication at 38.4 kbps is available)
Multi command mode" has been added to Mitsubish inverter protocol (data processing time of the inverter has been reduced to $1 / 4$) Supports Modbus RTU

4 Compact and space saving

(1) Easily replaceable compact body Installation size is the same as that of the FR-S500 series which is the smallest model of the Mitsubishi inverter.
(2) Side by side installation saves space Space can be saved by side by side no clearance installation*. : Use the inverter at the surrounding air temperature of $40^{\circ} \mathrm{Cor}$ 隹s.

5 Easy maintenance

(1) Easy replacement of cooling fan A cooling fan is provided on top of the inverter of all capacities of the inverter of all capacities
requiring a cooling fan (1.5 K or more).
A cooling fan can be easily replaced without disconnecting main circuit wires.

(2) Combed shaped wiring cover Since a cover can be fitted fter wiring, wiring work is easily done.

6 Environment consciousness in global standard

(1) RoHS Directive compliant Human and environment-friendly inverter in compliant with RoHS Directive.
RoHS Directive requires member nations to guarantee that new electrical and electronic

OHS Directive compliance is printed on the package.
(2) Filter pack FR-BFP2 (option)

Power factor improving DC reactor, zero phase reactor, and capacitative filter (radio noise filter), are frequently-used units for an air conditioning application. The filter pack combines those three units are available as an option.
(3) EMC Directive compliant noise filter Compliance to the EMC Directive of European Norm is easier. EMC filter integrated type will be added to the line (to be released) Noise filter option which is compatible with EMC Directive (EN61800-3 2nd Environment Category C3) is available.
(4) Complies with UL, cUL,EN (LVD) standards

© (Mus

7 Lineup

The lineup of three phase $200 \mathrm{~V} / 400 \mathrm{~V}$ class goes to 15 K

- For a use in harsh environment, special unit with board coating is also available. Please contact our sales representative. - For the FR-D700 series, North American (NA), EU (EC), and Chinese (CHT) specifications also are supported.

Rating

- Three-phase 200V power supply

Model FR-D720- $\square \mathrm{K}(-\mathrm{C}) * 6$	0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5
Model FR-D720- \square-NA	008	014	025	042	070	100	165	238	318
Applicable motor capacity (kW)*1	0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5
Rated capacity (kVA)*2	0.3	0.6	1.0	1.7	2.8	4.0	6.6	9.5	12.7
끌 Rated current (A)	0.8	1.4	2.5	4.2	7.0	10.0	16.5	23.8	31.8
\bigcirc Overload current rating*3	150\% 60s, 200\% 0.5s (inverse-time characteristics)								
Voltage*4	Three-phase 200 to 240V								
入 Rated input AC voltage/frequency	Three-phase 200 to $240 \mathrm{~V} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$								
윽 Permissible AC voltage fluctuation	170 to $264 \mathrm{~V} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$								
$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\pm 5 \%$								
\% Power supply capacity (kVA)*5	0.4	0.7	1.2	2.1	4.0	5.5	9.0	12.0	17.0
Protective structure (JEM1030)	Enclosed type (IP20). IP40 for totally enclosed structure series.								
Cooling system	Self-cooling				Forced air cooling				
Approximate mass (kg)	0.5	0.5	0.8	1.0	1.4	1.4	1.8	3.6	3.6

- Three-phase 400V power supply

Model FR-D740- $\square \mathrm{K}(-\mathrm{C}$)*6	0.4	0.75	1.5	2.2	3.7	5.5	7.5
Model FR-D740-■-NA	012	022	036	050	080	120	160
Model FR-D740- \square-EC	012	022	036	050	080	120	160
Model FR-D740- $\square \mathrm{K}$-CHT	0.4	0.75	1.5	2.2	3.7	5.5	7.5
Applicable motor capacity (kW)*1	0.4	0.75	1.5	2.2	3.7	5.5	7.5
Rated capacity (kVA)*2	0.9	1.7	2.7	3.8	6.1	9.1	12.2
끈 Rated current (A)	1.2	2.2	3.6	5.0	8.0	12.0	16.0
\bigcirc Overload current rating*3	150\% 60s, 200\% 0.5s (inverse-time characteristics)						
Voltage*4	Three-phase 380 to 480V						
入 Rated input AC voltage/frequency	Three-phase 380 to $480 \mathrm{~V} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$						
O Permissible AC voltage fluctuation	325 to $528 \mathrm{~V} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$						
$\stackrel{\text { ¢ }}{ } \stackrel{\text { ¢ }}{ }$	$\pm 5 \%$						
< Z (Power supply capacity (kVA)*5	1.5	2.5	4.5	5.5	9.5	12.0	17.0
Protective structure (JEM1030)	Enclosed type (IP20). IP40 for totally enclosed structure series.						
Cooling system	Self-cooling		Forced air cooling				
Approximate mass (kg)	1.3	1.3	1.4	1.5	1.5	3.3	3.3

*1 The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi 4-pole standard motor.
*2 The rated output capacity indicated assumes that the output voltage is 230 V for three-phase 200 V class and 440 V for three-phase 400 V class.
*3 The \% value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under 100\% load.
*4 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However, the pulse voltage value of the inverter output side voltage remains unchanged at about $\sqrt{2}$ that of the power supply.
*5 The power supply capacity varies with the value of the power supply side inverter impedance (including those of the input reactor and cables).
*6 Totally enclosed structure series ends with -C.

- Single-phase 200V power supply

	Model FR-D720S-■K	0.1	0.2	0.4	0.75	1.5	2.2
	Model FR-D720S- \square-NA	008	014	025	042	070	100
	Model FR-D720S- \square-EC	008	014	025	042	070	100
	Model FR-D720S- $\square \mathrm{K}$-CHT	0.1	0.2	0.4	0.75	1.5	2.2
Applicable motor capacity (kW)*1		0.1	0.2	0.4	0.75	1.5	2.2
$\begin{aligned} & \text { 금 } \\ & \stackrel{0}{7} \\ & 0 \end{aligned}$	Rated capacity (kVA)*2	0.3	0.6	1.0	1.7	2.8	4.0
	Rated current (A)	0.8	1.4	2.5	4.2	7.0	10.0
	Overload current rating*3	150\% 60s, 200\% 0.5s (inverse-time characteristics)					
	Voltage*4	Three-phase 200 to 240V					
	Rated input AC voltage/frequency	Single-phase 200 to $240 \mathrm{~V} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$					
	Permissible AC voltage fluctuation	170 to $264 \mathrm{~V} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$					
	Permissible frequency fluctuation	$\pm 5 \%$					
	Power supply capacity (kVA)*5	0.5	0.9	1.5	2.3	4.0	5.2
Protective structure (JEM1030)		Enclosed type (IP20).					
Cooling system		Self-cooling				Forced air cooling	
Approximate mass (kg)		0.5	0.5	0.9	1.1	1.5	2.0

- Single-phase 100V power supply

Model FR-D710W- $\square \mathrm{K}$	0.1	0.2	0.4	0.75
Model FR-D710W- \square-NA	008	014	025	042
Applicable motor capacity (kW)*1	0.1	0.2	0.4	0.75
Rated capacity (kVA)*2	0.3	0.6	1.0	1.7
\pm Rated current (A)	0.8	1.4	2.5	4.2
\% Overload current rating*3	$150 \% 60 \mathrm{~s}, 200 \% 0.5 \mathrm{~s}$ (inverse-time characteristics)			
Voltage	Three-phase 200 to $230 \mathrm{~V} * 6, * 7$			
入 Rated input AC voltage/frequency	Single-phase 100 to $115 \mathrm{~V} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$			
윽 Permissible AC voltage fluctuation	90 to $132 \mathrm{~V} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$			
$\stackrel{\square}{\omega}$ ¢ ${ }^{\circ}$ Permissible frequency fluctuation	$\pm 5 \%$			
§	0.5	0.9	1.5	2.5
Protective structure (JEM1030)	Enclosed type (IP20).			
Cooling system	Self-cooling			
Approximate mass (kg)	0.6	0.7	0.9	1.4

*1 The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi 4-pole standard motor.
*2 The rated output capacity indicated assumes that the output voltage is 230 V .
*3 The \% value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under 100\% load. If the automatic restart after instantaneous power failure function (Pr. 57) or power failure stop function (Pr.261) is set and power supply voltage is low while load becomes bigger, the bus voltage decreases to power failure detection level and load of 100% or more may not be available.
*4 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However, the pulse voltage value of the inverter output side voltage remains unchanged at about $\sqrt{2}$ that of the power supply.
*5 The power supply capacity varies with the value of the power supply side inverter impedance (including those of the input reactor and cables).
$* 6$ For single-phase 100 V power input model, the maximum output voltage is twice the amount of the power supply voltage and cannot be exceeded.
*7 In a single-phase 100V power input model, the output voltage may fall down when the load is heavy, and larger output current may flow compared to a threephase input model. Use the motor with less load so that the output current is within the rated motor current range.

Common specifications

-FR-D720-0.1K to 0.75 K
-FR-D720S-0.1K to 0.75 K
-FR-D710W-0.1K to 0.4 K

(Unit: mm)
-FR-D720-1.5K to 3.7 K
-FR-D740-0.4K to 3.7 K
-FR-D720S-1.5K
-FR-D710W-0.75K

* FR-D740-0.4K, 0.75K, FR-D710W-0.75K are not provided with the cooling fan.

Inverter Type	W	W1	D	D1
$\begin{aligned} & \text { FR-D720-1.5K, 2.2K } \\ & \text { FR-D740-1.5K } \end{aligned}$	108	96	135.5	60
FR-D740-0.4K, 0.75K			129.5	54
$\begin{aligned} & \hline \text { FR-D740-2.2K } \\ & \text { FR-D720S-1.5K } \end{aligned}$			155.5	60
FR-D740-3.7K			165.5	
FR-D710W-0.75K			149.5	54
FR-D720-3.7K	170	158	142.5	66.5
(Unit: mm)				

(Unit: mm)
-FR-D720-5.5K, 7.5K
-FR-D740-5.5K, 7.5K

-Parameter unit (option) (FR-PU07)
<Outline drawing>
<Panel cut dimension drawing>

1 When installing the FR-PU07 on the enclosure, etc., remove screws or fix the screws to the FR-PU07 with M3 nuts.
*2 Select the installation screw whose length will not exceed the effective depth of the installation screw hole.
(Unit: mm)
-Parameter unit with battery pack (option) (FR-PU07BB (-L))

M3 screw *2

,

Note
To prevent a malfunction caused by noise, separate the signal cables more than 10 cm from the power cables. Also separate the main circuit wire of the input side and the output side.
After wiring, wire offcuts must not be left in the inverter.
Wire offcuts can cause an alarm, failure or malfunction. Always keep the inverter clean. When drilling mounting holes in an enclosure etc., take care not to allow chips and other foreign matter to enter the inverter.

- The output of the single-phase power input specification is three-phase 200 V .

Type	Terminal Symbol	Terminal Name	Description		
	$\begin{gathered} \text { R/L1, S/L2, } \\ \text { T/L3 * } \end{gathered}$	AC power input	Connect to the commercial power supply. Keep these terminals open when using the high power factor converter (FR-HC) or power regeneration common converter (FR-CV). * When using single-phase power input, terminals are R/L1 and S/L2.		
	U, V, W	Inverter output	Connect a three-phase squirrel-cage motor.		
	P/+, PR	Brake resistor connection	Connect a brake resistor (FR-ABR, MRS type, MYS type) across terminals P/+ and PR. (The brake resistor can not be connected to the 0.1 K and 0.2 K .)		
	P/+, N/-	Brake unit connection	Connect the brake unit (FR-BU2), power regeneration common converter (FR-CV) or high power factor converter (FR-HC).		
	P/+, P1 *	DC reactor connection	Remove the jumper across terminals P/+-P1 and connect a DC reactor. Single-phase 100 V power input model is not compatible with DC reactor. * Terminal P1 is not available for single-phase 100 V power input model.		
		Earth (Ground)	For earthing (grounding) the inverter chassis. Must be earthed (grounded).		
$\begin{array}{\|c\|c} \bar{\pi} & \stackrel{\rightharpoonup}{0} \\ \stackrel{ভ}{\sigma} & \stackrel{0}{0} \end{array}$	STF	Forward rotation start	Turn on the STF signal to start forwa		
	STR	Reverse rotation start	Turn on the STR signal to start reverse rotation and turn it off to stop.		
	RH, RM, RL	Multi-speed selection	Multi-speed can be selected according to the combination of RH,	M and	signals.
	SD	Contact input common (sink) (initial setting)	Common terminal for contact input terminal (sink logic) and terminal FM.		
		External transistor common (source)	When connecting the transistor output (open collector output), such as a programmable controller, when source logic is selected, connect the external power supply common for transistor output to this terminal to prevent a malfunction caused by undesirable currents.		
		24VDC power supply common	Common output terminal for 24VDC 0.1A power supply (PC terminal). Isolated from terminals 5 and SE.		
	PC	External transistor common (sink) (initial setting)	When connecting the transistor output (open collector output), such as a programmable controller, when sink logic is selected, connect the external power supply common for transistor output to this terminal to prevent a malfunction caused by undesirable currents.		
		Contact input common (source)	Common terminal for contact input terminal (source logic).		
		24VDC power supply	Can be used as 24VDC 0.1A power supply.		
	10	Frequency setting power supply	Used as power supply when connecting potentiometer for frequency setting (speed setting) from outside of the inverter.		5VDC permissible load current 10 mA
	2	Frequency setting (voltage)	Inputting 0 to 5VDC (or 0 to 10 V) provides the maximum output frequency at $5 \mathrm{~V}(10 \mathrm{~V})$ and makes input and output proportional. Use Pr. 73 to switch between input 0 to 5VDC (initial setting) and 0 to 10 VDC input.	Input resistance $10 \mathrm{k} \Omega \pm 1 \mathrm{k} \Omega$ Permissible maximum voltage 20VDC	
	4	Frequency setting (current)	Inputting 0 to 20 mADC (or 0 to $5 \mathrm{~V} / 0$ to 10 V) provides the maximum output frequency at 20 mA makes input and output proportional. This input signal is valid only when the AU signal is on (terminal 2 input is invalid). Use Pr. 267 to switch from among input 4 to 20 mA (initial setting), 0 to 5VDC and 0 to 10VDC. Set the voltage/current input switch in the " V " position to select voltage input (0 to $5 \mathrm{~V} / 0$ to 10 V).	Voltage input: Input resistance $10 \mathrm{k} \Omega \pm 1 \mathrm{k} \Omega$ Permissible maximum voltage 20VDC Current input: Input resistance $233 \Omega \pm 5 \Omega$ Maximum permissible current 30 mA .	
	5	Frequency setting common	Common terminal for the frequency setting signals (terminals 2 or 4). Do not earth (ground).		
	$\begin{gathered} 10 \\ 2 \end{gathered}$	PTC thermistor input	For connecting PTC thermistor output. When PTC thermistor protection is valid (Pr. $561 \neq$ " 9999 "), terminal 2 is not available for frequency setting.	Adaptive PTC thermistor resistance: 500Ω to $30 \mathrm{k} \Omega$	
	A, B, C	Relay output (fault output)	1 changeover contact output indicates that the inverter fault occurs. Fault: discontinuity across B-C (continuity across A-C), Normal: continuity across B-C (discontinuity across A-C) Contact capacity 230VAC 0.3 A (power factor $=0.4$) 30VDC 0.3 A		
	RUN	Inverter running	Switched low when the inverter output frequency is equal to or higher than the starting frequency (initial value 0.5 Hz). Switched high during stop or DC injection brake operation. (Low is when the open collector output transistor is ON (conducts). High is when the transistor is OFF (does not conduct).)	Permissible load 24VDC (Maximum 27VDC) 0.1A (a voltage drop is 3.4 V maximum when the signal is on)	
	SE	Open collector output common	Common terminal of terminal RUN and FU.		
	FM	For meter	Select one e.g. output frequency from monitor items. (Not output during inverter reset.) The output signal is proportional to the magnitude of the corresponding monitoring item.	$\begin{aligned} & \text { Permissi } \\ & 1440 \text { pul } \end{aligned}$	ible load current 1 mA ses/s at 60 Hz
C읎	-	PU connector	With the PU connector, RS-485 communication can be made. - Conforming standard: EIA-485 (RS-485) - Transmission format: Multi-drop link - Communication speed: 4800 to 38400 bps - Overall extension: 500 m		
$\overline{0}$	S1	Safe stop input (Line 1)	S1/S2 are safe stop signals for use with in conjunction with an approved external safety unit. Both S1/ S2 must be used in dual channel form. Inverter output is shutoff depending on shorting/opening		
- 0	S2	Safe stop input (Line 2)	Remove the shorting wire before using between S1, S2 and SC terminals.		
	SO	Safety monitor output (open collector output)	This is a status signal for the safety related input signals. Low indicates 'safe state' and high is 'drive enable or fault detected'. If high is indicated when both S 1 and S 2 are open, refer to Safety stop function instruction manual (BCN-A211508-000) for diagnostics and repair action. (Low is when the open collector output transistor is ON (conducts). High is when the transistor is OFF (does not conduct).)		
	SC	Output shutoff terminal common	Common terminal for terminals S1, S2 and SO. Connected to terminal SD inside of the inverter.		

Note

- Set Pr. 267 and a voltage/current input switch correctly, then input an analog signal in accordance with the setting. Applying a voltage with voltage/current input switch in "I" position (current input is selected) or a current with switch in "V" position (voltage input is selected) could cause component damage of the inverter or analog circuit of output devices.
- The inverter will be damaged if power is applied to the inverter output terminals (U, V, W). Never perform such wiring.
indicates that terminal functions can be selected using Pr. 178 to Pr. 182, Pr. 190, Pr. 192 (I/O terminal function selection).
Terminal names and terminal functions are those of the factory set.

The operation panel cannot be removed from the inverter.

Operation mode indication

PU: Lit to indicate PU operation mode.
EXT: Lit to indicate External operation mode. (Lit at power-ON at initial setting.)
NET: Lit to indicate Network operation mode PU, EXT: Lit to indicate External/PU combined operation mode 1, 2 These turn OFF when command source is not on operation panel.

Unit indication Hz: Lit to indicate frequency. (Flickers when the set frequency monitor is displayed.) A: Lit to indicate current. (Both "Hz" and "A" turn off when other than the above is displayed.)
Monitor (4-digit LED) Shows the frequency, parameter number, etc. Setting dial (Setting dial: Mitsubishi inverter dial) Used to change the frequency setting and parameter values. Press to display the following. - Displays the set frequency in the monitor mode - Present set value is displayed during calibration - Displays the order in the faults history mode

Mode switchover

Used to change each setting mode.
Pressing $\frac{\text { PU }}{\text { EXT }}$ simultaneously changes
the operation mode.
Pressing for a while (2s) can lock
operation.
Determination of each setting If pressed during operation, monitor changes as below;

Parameter unit (FR-PU07), parameter unit with battery pack (FR-PU07BB(-L) (available soon))

- The parameter unit is a convenient tool for inverter setting such as direct input method with a numeric keypad, operation status indication, and help function.
- Eight languages can be displayed.
- Parameter setting values of maximum of three inverters can be stored.
- With the FR-PU07BB(-L), parameter check and setting change can be made without connecting a power supply to the inverter. Use AA nickel hydride batteries, AA alkali batteries, or AC adapter separately available as power supply.
- Since the shape is specially designed for portable use, it is easy to work with the FR-PU07BB(-L) in hand.
* The parameter unit connection cable FR-CB20 \square is required for connecting to the inverter. (Parameter unit connection cable FR-CB203(3m) is enclosed with FR-PU07BB(-L).)
* To use a parameter unit with battery pack (FR-PU07BB) outside Japan, order a "FR-PU07BB-L" (parameter unit type indicated on the package has L at the end). Since enclosed batteries may conflict with laws in countries to be used (new EU Directive on batteries and accumulators, etc.), batteries are not enclosed with an FR-PU07BB-L.

-POWER lamp

Lit when the power turns on

- Monitor

Liquid crystal display
(16 characters x 4 lines with backlight)

- Interactive parameter setting
- Trouble shooting guidance
- Monitor (frequency, current, power, etc.)

ALARM Iamp

Lit to indicate an inverter alarm occurrence.

Operation keys
(Refer to the table on the right)

Key	Description
PrSET	Use for parameter setting Press to choose the parameter setting mode.
MON	First priority monitor is displayed. In the initial setting, the output frequency is displayed.
ESC	Operation cancel key
FUNC	Used to display the function menu. A variety of functions can be used on the function menu.
SHIFT	Used to shift to the next item in the setting or monitoring mode.
(0) to (9)	Used to enter a frequency, parameter number or set value.
EXT	Inverter operates in the external operation mode.
PU	Used to select the PU operation mode to display the frequency setting screen.
	- Used to keep on increasing or decreasing the running frequency. Hold down to vary the frequency. - Press either of these keys on the parameter setting mode screen to change the parameter setting value sequentially. - On the selecting screen, these keys are used to move the cursor. - Hold down SHIFT and press either of these keys to advance or return the display screen one page.
FWD	Forward rotation command key.
REV	Reverse rotation command key.
STOP	- Stop command key. - Used to reset the inverter when an alarm occurs.
WRITE	- Used to write a set value in the setting mode. - Used as a clear key in the all parameter clear or alarm history clear mode.
$\stackrel{\bullet}{\text { READ }}$	- Used as a decimal point when entering numerical value. - Used as a parameter number read key in the setting mode. - Used as an item select key on the menu screen such as parameter list or monitoring list. - Used as an alarm definition display key in the alarm history display mode. - Used as a command voltage read key in the calibration mode.

- Main functions

Function	Description
Monitor	6 types of monitors appear by simply pressing (SHIFT.

[^0]For simple variable-speed operation of the inverter, the initial setting of the parameters may be used as they are. Set the necessary parameters to meet the load and operational specifications. Parameter setting, change and check can be made from the operation panel. For details of parameters, refer to the instruction manual.
This catalog explains based on the Japanese specifications.

POINT

Only simple mode parameters are displayed by the initial setting of Pr. 160 Extended function display selection. Set Pr. 160 Extended function display selection as required.

Pr. 160	Description
9999 (initial value)	Parameters classified as simple mode can be displayed.
0	Both the parameters classified as simple mode and the parameters classified as extended mode can be displayed.

Parameter Number	Name	Unit	Initial Value	Range	Application

- Extended mode parameter

0 OD REMARKS
-
© indicates simple mode parameters.

- The shaded parameters in the table allow its setting to be changed during operation even if " 0 " (initial value) is set in Pr. 77

Parameter write selection

Function	Parameter	Name	Setting Range	Minimum Setting Increments	Initial Value	Customer Setting
0 0 0 0 0 0	© 0	Torque boost	0 to 30\%	0.1\%	6/4/3\% *1	
	(-1	Maximum frequency	0 to 120 Hz	0.01 Hz	120 Hz	
	© 2	Minimum frequency	0 to 120 Hz	0.01 Hz	0Hz	
	© 3	Base frequency	0 to 400 Hz	0.01 Hz	60 Hz	
	(0) 4	Multi-speed setting (high speed)	0 to 400 Hz	0.01 Hz	60 Hz	
	© 5	Multi-speed setting (middle speed)	0 to 400 Hz	0.01 Hz	30 Hz	
	© 6	Multi-speed setting (low speed)	0 to 400 Hz	0.01 Hz	10 Hz	
	(0) 7	Acceleration time	0 to 3600s	0.1 s	5/10s *2	
	© 8	Deceleration time	0 to 3600s	0.1 s	5/10s *2	
	© 9	Electronic thermal O/L relay	0 to 500A	0.01A		
	10	DC injection brake operation frequency	0 to 120 Hz	0.01 Hz	3 Hz	
	11	DC injection brake operation time	0 to 10s	0.1 s	0.5s	
	12	DC injection brake operation voltage	0 to 30\%	0.1\%	6/4\% *3	
-	13	Starting frequency	0 to 60 Hz	0.01 Hz	0.5 Hz	
-	14	Load pattern selection	0 to 3	1	0	
	15	Jog frequency	0 to 400 Hz	0.01 Hz	5 Hz	
	16	Jog acceleration/deceleration time	0 to 3600s	0.1 s	0.5s	
-	17	MRS input selection	0, 2, 4	1	0	
-	18	High speed maximum frequency	120 to 400 Hz	0.01 Hz	120 Hz	
-	19	Base frequency voltage	0 to 1000V, 8888, 9999	0.1 V	9999	
	20	Acceleration/deceleration reference frequency	1 to 400 Hz	0.01 Hz	60 Hz	
	22	Stall prevention operation level	0 to 200\%	0.1\%	150\%	
	23	Stall prevention operation level compensation factor at double speed	0 to 200\%, 9999	0.1\%	9999	
	24	Multi-speed setting (speed 4)	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999	
	25	Multi-speed setting (speed 5)	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999	
	26	Multi-speed setting (speed 6)	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999	
	27	Multi-speed setting (speed 7)	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999	
-	29	Acceleration/deceleration pattern selection	0, 1, 2	1	0	
-	30	Regenerative function selection	0, 1, 2	1	0	
	31	Frequency jump 1A	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999	
	32	Frequency jump 1B	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999	
	33	Frequency jump 2A	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999	
	34	Frequency jump 2B	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999	
	35	Frequency jump 3A	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999	
	36	Frequency jump 3B	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999	
-	37	Speed display	0, 0.01 to 9998	0.001	0	
-	40	RUN key rotation direction selection	0, 1	1	0	
	41	Up-to-frequency sensitivity	0 to 100\%	0.1\%	10\%	
	42	Output frequency detection	0 to 400Hz	0.01 Hz	6 Hz	
	43	Output frequency detection for reverse rotation	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999	

Function	Parameter	Name	Setting Range	$\begin{aligned} & \text { Minimum } \\ & \text { Setting } \\ & \text { Increments } \end{aligned}$	Initial Value	Customer Setting
0 0	44	Second acceleration/deceleration time	0 to 3600s	0.1 s	5/10s *2	
	45	Second deceleration time	0 to 3600s, 9999	0.1 s	9999	
	46	Second torque boost	0 to 30\%, 9999	0.1\%	9999	
	47	Second V/F (base frequency)	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999	
	48	Second stall prevention operation current	0 to 200\%, 9999	0.1\%	9999	
	51	Second electronic thermal O/L relay	0 to 500A, 9999	0.01A	9999	
	52	DU/PU main display data selection	$\begin{aligned} & 0,5,8 \text { to } 12,14,20 \\ & 23 \text { to } 25,52 \text { to } 55,61 \text {, } \\ & 62,64,100 \end{aligned}$	1	0	
	54	FM terminal function selection	$\begin{aligned} & 1 \text { to } 3,5,8 \text { to } 12,14,21 \text {, } \\ & 24,52,53,61,62 \end{aligned}$	1	1	
	55	Frequency monitoring reference	0 to 400Hz	0.01 Hz	60 Hz	
	56	Current monitoring reference	0 to 500A	0.01A		
	57	Restart coasting time	0, 0.1 to $5 \mathrm{~s}, 9999$	0.1 s	9999	
	58	Restart cushion time	0 to 60s	0.1 s	1 s	
-	59	Remote function selection	0, 1, 2, 3	1	0	
-	60	Energy saving control selection	0,9	1	0	
-	65	Retry selection	0 to 5	1	0	
-	66	Stall prevention operation reduction starting frequency	0 to 400 Hz	0.01 Hz	60 Hz	
$\underset{\text { Z }}{\substack{\mathrm{D}}}$	67	Number of retries at fault occurrence	0 to 10, 101 to 110	1	0	
	68	Retry waiting time	0.1 to 600s	0.1 s	1s	
	69	Retry count display erase	0	1	0	
-	70	Special regenerative brake duty	0 to 30\%	0.1\%	0\%	
-	71	Applied motor	$\begin{aligned} & 0,1,3,13,23,40,43 \\ & 50,53 \end{aligned}$	1	0	
-	72	PWM frequency selection	0 to 15	1	1	
-	73	Analog input selection	0, 1, 10, 11	1	1	
-	74	Input filter time constant	0 to 8	1	1	
-	75	Reset selection/disconnected PU detection/PU stop selection	0 to 3, 14 to 17	1	14	
-	77	Parameter write selection	0, 1, 2	1	0	
-	78	Reverse rotation prevention selection	0, 1, 2	1	0	
-	© 79	Operation mode selection	0, 1, 2, 3, 4, 6, 7	1	0	
00000000.00.0\vdots	80	Motor capacity	0.1 to 7.5kW, 9999	0.01 kW	9999	
	82	Motor excitation current	0 to 500A, 9999	0.01A	9999	
	83	Rated motor voltage	0 to 1000V	0.1 V	$\underset{* 4}{200 \mathrm{~V} / 400 \mathrm{~V}}$	
	84	Rated motor frequency	10 to 120 Hz	0.01 Hz	60 Hz	
	90	Motor constant (R1)	0 to $50 \Omega, 9999$	0.001Ω	9999	
	96	Auto tuning setting/status	0, 11, 21	1	0	
	117	PU communication station number	0 to 31 (0 to 247)	1	0	
	118	PU communication speed	48, 96, 192, 384	1	192	
	119	PU communication stop bit length	0, 1, 10, 11	1	1	
	120	PU communication parity check	0, 1, 2	1	2	
	121	Number of PU communication retries	0 to 10, 9999	1	1	
	122	PU communication check time interval	0, 0.1 to 999.8s, 9999	0.1 s	0	
	123	PU communication waiting time setting	0 to 150ms, 9999	1	9999	
	124	PU communication CR/LF selection	0, 1, 2	1	1	
-	© 125	Terminal 2 frequency setting gain frequency	0 to 400 Hz	0.01 Hz	60 Hz	
-	©126	Terminal 4 frequency setting gain frequency	0 to 400 Hz	0.01 Hz	60 Hz	

Function	Parameter	Name	Setting Range	Minimum Setting Increments	Initial Value	Customer Setting
	127	PID control automatic switchover frequency	0 to 400Hz, 9999	0.01 Hz	9999	
	128	PID action selection	0, 20, 21, 40 to 43	1	0	
	129	PID proportional band	0.1 to 1000\%, 9999	0.1\%	100\%	
	130	PID integral time	0.1 to 3600s, 9999	0.1 s	1s	
	131	PID upper limit	0 to 100\%, 9999	0.1\%	9999	
	132	PID lower limit	0 to 100\%, 9999	0.1\%	9999	
	133	PID action set point	0 to 100\%, 9999	0.01\%	9999	
	134	PID differential time	0.01 to 10s, 9999	0.01s	9999	
$\stackrel{\square}{0}$	145	PU display language selection	0 to 7	1	0	
-	146 *5	Built-in potentiometer switching	0, 1	1	1	
	150	Output current detection level	0 to 200\%	0.1\%	150\%	
	151	Output current detection signal delay time	0 to 10s	0.1 s	Os	
	152	Zero current detection level	0 to 200\%	0.1\%	5\%	
	153	Zero current detection time	0 to 1s	0.01s	0.5s	
-	156	Stall prevention operation selection	0 to 31, 100, 101	1	0	
-	157	OL signal output timer	0 to 25s, 9999	0.1 s	0s	
-	(®) 160	Extended function display selection	0,9999	1	9999	
-	161	Frequency setting/key lock operation selection	0, 1, 10, 11	1	0	
	162	Automatic restart after instantaneous power failure selection	0, 1, 10, 11	1	1	
	165	Stall prevention operation level for restart	0 to 200\%	0.1\%	150\%	
	166	Output current detection signal retention time	0 to 10s, 9999	0.1 s	0.1 s	
	167	Output current detection operation selection	0, 1	1	0	
-	168	Parameter for manufacturer setting. Do not set.				
-	169					
	170	Watt-hour meter clear	0, 10, 9999	1	9999	
	171	Operation hour meter clear	0,9999	1	9999	
	178	STF terminal function selection	$\begin{array}{\|l} \hline 0 \text { to } 5,7,8,10,12, \\ 14,16,18,24,25, \\ 60,62,65 \text { to } 67,9999 \\ \hline \end{array}$	1	60	
	179	STR terminal function selection	0 to $5,7,8,10,12$, $14,16,18,24,25$, $61,62,65$ to 67,9999	1	61	
	180	RL terminal function selection	$\begin{aligned} & 0 \text { to } 5,7,8,10,12, \\ & 14,16,18,24,25, \\ & 62,65 \text { to } 67,9999 \end{aligned}$	1	0	
	181	RM terminal function selection		1	1	
	182	RH terminal function selection		1	2	

Function	Parameter	Name	Setting Range	$\begin{aligned} & \text { Minimum } \\ & \text { Setting } \\ & \text { Increments } \end{aligned}$	Initial Value	Customer Setting
	190	RUN terminal function selection	$\begin{aligned} & 0,1,3,4,7,8,11 \text { to } 16 \text {, } \\ & 25,26,46,47,64,70, \\ & 80,90,91,93,95,96, \\ & 98,99,100,101,103, \\ & 104,107,108, \\ & 111 \text { to } 116,125,126, \\ & 146,147,164,170,180, \\ & 190,191,193,195, \\ & 196,198,199,9999 \end{aligned}$	1	0	
	192	A, B, C terminal function selection	$\begin{aligned} & \hline 0,1,3,4,7,8,11 \text { to } 16, \\ & 25,26,46,47,64,70 \\ & 80,90,91,95,96,98, \\ & 99,100,101,103,104, \\ & 107,108,111 \text { to } 116, \\ & 125,126,146,147,164, \\ & 170,180,190,191,195, \\ & 196,198,199,9999 \end{aligned}$	1	99	
	232	Multi-speed setting (speed 8)	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999	
	233	Multi-speed setting (speed 9)	0 to 400Hz, 9999	0.01 Hz	9999	
	234	Multi-speed setting (speed 10)	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999	
	235	Multi-speed setting (speed 11)	0 to 400Hz, 9999	0.01 Hz	9999	
	236	Multi-speed setting (speed 12)	0 to $400 \mathrm{~Hz}, 9999$	0.01 Hz	9999	
	237	Multi-speed setting (speed 13)	0 to 400Hz, 9999	0.01 Hz	9999	
	238	Multi-speed setting (speed 14)	0 to 400Hz, 9999	0.01 Hz	9999	
	239	Multi-speed setting (speed 15)	0 to 400Hz, 9999	0.01 Hz	9999	
-	240	Soft-PWM operation selection	0, 1	1	1	
-	241	Analog input display unit switchover	0,1	1	0	
-	244	Cooling fan operation selection	0, 1	1	1	
	245	Rated slip	0 to 50\%, 9999	0.01\%	9999	
	246	Slip compensation time constant	0.01 to 10s	0.01 s	0.5s	
	247	Constant-power range slip compensation selection	0,9999	1	9999	
-	249	Earth (ground) fault detection at start	0,1	1	0	
-	250	Stop selection	0 to 100s, 1000 to 1100s, 8888, 9999	0.1 s	9999	
-	251	Output phase loss protection selection	0, 1	1	1	
	255	Life alarm status display	(0 to 15)	1	0	
	256	Inrush current limit circuit life display	(0 to 100\%)	1\%	100\%	
	257	Control circuit capacitor life display	(0 to 100\%)	1\%	100\%	
	258	Main circuit capacitor life display	(0 to 100\%)	1\%	100\%	
	259	Main circuit capacitor life measuring	0, $1(2,3,8,9)$	1	0	
-	260	PWM frequency automatic switchover	0, 1	1	0	
	261	Power failure stop selection	0, 1, 2	1	0	
-	267	Terminal 4 input selection	0, 1, 2	1	0	
-	268	Monitor decimal digits selection	0, 1, 9999	1	9999	
-	269	Parameter for manufacturer setting. Do not set.				
-	295	Magnitude of frequency change setting	$\begin{aligned} & 0,0.01,0.10,1.00 \\ & 10.00 \end{aligned}$	0.01	0	
	296	Password lock level	1 to 6, 101 to 106, 9999	1	9999	
	297	Password lock/unlock	1000 to 9999 (0 to 5 , 9999)	1	9999	
-	298	Frequency search gain	0 to 32767, 9999	1	9999	
-	299	Rotation direction detection selection at restarting	0, 1, 9999	1	0	

Function	Parameter	Name	Setting Range	Minimum Setting Increments	Initial Value	Customer Setting
	338	Communication operation command source	0, 1	1	0	
	339	Communication speed command source	0, 1, 2	1	0	
	340	Communication startup mode selection	0, 1, 10	1	0	
	342	Communication EEPROM write selection	0,1	1	0	
	343	Communication error count	-	1	0	
	450	Second applied motor	0, 1, 9999	1	9999	
	495	Remote output selection	0, 1, 10, 11	1	0	
	496	Remote output data 1	0 to 4095	1	0	
-	502	Stop mode selection at communication error	0, 1, 2	1	0	
	503	Maintenance timer	0 (1 to 9998)	1	0	
	504	Maintenance timer alarm output set time	0 to 9998, 9999	1	9999	
	549	Protocol selection	0, 1	1	0	
	551	PU mode operation command source selection	2, 4, 9999	1	9999	
	555	Current average time	0.1 to 1s	0.1s	1 s	
	556	Data output mask time	0 to 20s	0.1 s	Os	
	557	Current average value monitor signal output reference current	0 to 500A	0.01A	Rated inverter current	
-	561	PTC thermistor protection level	0.5 to $30 \mathrm{k} \Omega$, 9999	0.01Ω	9999	
-	563	Energization time carrying-over times	(0 to 65535)	1	0	
-	564	Operating time carrying-over times	(0 to 65535)	1	0	
-	571	Holding time at a start	0 to 10s, 9999	0.1s	9999	
	575	Output interruption detection time	0 to 3600s, 9999	0.1 s	1 s	
	576	Output interruption detection level	0 to 400 Hz	0.01 Hz	OHz	
	577	Output interruption cancel level	900 to 1100\%	0.1\%	1000\%	
-	611	Acceleration time at a restart	0 to 3600s, 9999	0.1 s	9999	
-	653	Speed smoothing control	0 to 200\%	0.1\%	0	
-	665	Regeneration avoidance frequency gain	0 to 200\%	0.1\%	100	
	872 *7	Input phase loss protection selection	0, 1	1	0	
	882	Regeneration avoidance operation selection	0, 1, 2	1	0	
	883	Regeneration avoidance operation level	300 to 800 V	0.1 V	$\begin{gathered} \hline 400 \mathrm{VDC/} \\ 780 \mathrm{VDC} * 4 \end{gathered}$	
	885	Regeneration avoidance compensation frequency limit value	0 to 10Hz, 9999	0.01 Hz	6 Hz	
	886	Regeneration avoidance voltage gain	0 to 200\%	0.1\%	100\%	

Function	Parameter	Name	Setting Range	$\begin{aligned} & \text { Minimum } \\ & \text { Setting } \\ & \text { Increments } \end{aligned}$	Initial Value	Customer Setting
	888	Free parameter 1	0 to 9999	1	9999	
	889	Free parameter 2	0 to 9999	1	9999	
-	891	Cumulative power monitor digit shifted times	0 to 4, 9999	1	9999	
	$\begin{gathered} \mathrm{C0} \\ (900) * 6 \end{gathered}$	FM terminal calibration	-	-	-	
	$\begin{gathered} \text { C2 } \\ (902) * 6 \\ \hline \end{gathered}$	Terminal 2 frequency setting bias frequency	0 to 400 Hz	0.01 Hz	OHz	
	$\begin{gathered} \text { C3 } \\ (902) * 6 \end{gathered}$	Terminal 2 frequency setting bias	0 to 300\%	0.1\%	0\%	
	$\begin{gathered} 125 \\ (903) * 6 \end{gathered}$	Terminal 2 frequency setting gain frequency	0 to 400 Hz	0.01 Hz	60 Hz	
	$\begin{gathered} \text { C4 } \\ (903) * 6 \end{gathered}$	Terminal 2 frequency setting gain	0 to 300\%	0.1\%	100\%	
	$\begin{gathered} \text { C5 } \\ (904) * 6 \end{gathered}$	Terminal 4 frequency setting bias frequency	0 to 400 Hz	0.01 Hz	0 Hz	
	$\begin{gathered} \text { C6 } \\ (904) * 6 \end{gathered}$	Terminal 4 frequency setting bias	0 to 300\%	0.1\%	20\%	
	$\begin{gathered} 126 \\ (905) * 6 \end{gathered}$	Terminal 4 frequency setting gain frequency	0 to 400 Hz	0.01 Hz	60 Hz	
	$\begin{gathered} \text { C7 } \\ (905) * 6 \end{gathered}$	Terminal 4 frequency setting gain	0 to 300\%	0.1\%	100\%	
	$\begin{gathered} \text { C22 } \\ (922) * 5 * 6 \end{gathered}$	Frequency setting voltage bias frequency (built-in potentiometer)	0 to 400 Hz	0.01 Hz	0	
	$\begin{gathered} \text { C23 } \\ (922) * 5 * 6 \end{gathered}$	Frequency setting voltage bias (built-in potentiometer)	0 to 300\%	0.1\%	0	
	$\begin{gathered} \text { C24 } \\ (923) * 5 * 6 \end{gathered}$	Frequency setting voltage gain frequency (built-in potentiometer)	0 to 400 Hz	0.01 Hz	60 Hz	
	$\begin{gathered} \text { C25 } \\ (923) * 5 * 6 \end{gathered}$	Frequency setting voltage gain (built-in potentiometer)	0 to 300\%	0.1\%	100\%	
ㄱ	990	PU buzzer control	0,1	1	1	
	991	PU contrast adjustment	0 to 63	1	58	
	Pr.CL	Parameter clear	0, 1	1	0	
	ALLC	All parameter clear	0, 1	1	0	
	Er.CL	Faults history clear	0, 1	1	0	
	Pr.CH	Initial value change list	-	-	-	

*1 Differ according to capacities.
6% : 0.75 K or less
4\%: 1.5 K to 3.7 K
3\%: 5.5K, 7.5K
*2 Differ according to capacities.
$5 \mathrm{~s}: 3.7 \mathrm{~K}$ or less
10s: $5.5 \mathrm{~K}, 7.5 \mathrm{~K}$
*3 Differ according to capacities.
6\%: 0.1K, 0.2K
4% : 0.4 K to 7.5 K
*4 The initial value differs according to the voltage class. (100Vclass, 200 V class $/ 400 \mathrm{~V}$ class)
*5 Set this parameter when calibrating the operation panel built-in potentiometer for the FR-E500 series operation panel (PA02) connected with cable.
*6 The parameter number in parentheses is the one for use with the operation panel (PA02) for the FR-E500 series or parameter unit (FR-PU04/ FR-PU07).
*7 Available only for the three-phase power input specification model.

When a fault occurs，the inverter trips and the PU display automatically changes to any of the following fault or alarm indications．

Function Name		Description	Display
	Operation panel lock	Appears when operation was tried during operation panel lock．	Hibd
	Password locked	Appears when a password restricted parameter is read／written．	1808
	Parameter write error	Appears when an error occurred during parameter writing．	$\begin{array}{c:c} E_{r}^{\prime} \text { to } \\ E_{-1}^{\prime} \end{array}$
	Inverter reset	Appears when the RES signal is on．	Err．
	Stall prevention（overcurrent）	Appears during overcurrent stall prevention．	Oit
	Stall prevention（overvoltage）	Appears during overvoltage stall prevention．Appears while the regeneration avoidance function is activated．	－1
	Regenerative brake prealarm＊7	Appears if the regenerative brake duty reaches or exceeds 85% of the Pr． 70 Special regenerative brake duty value．If the regenerative brake duty reaches 100% ，a regenerative overvoltage（ E ．OV＿）occurs．	rb
	Electronic thermal relay function prealarm	Appears when the electronic thermal O／L relay has reached 85% of the specified value．	「H1
	PU stop	Appears when on the operation panel was pressed during external operation．	PS
	Maintenance signal output＊7	Appears when the cumulative energization time has exceeded the maintenance output timer set value．	717
	Undervoltage	Appears when the main circuit power became low voltage．	Uis
	Fan alarm	Appears when the cooling fan remains stopped when operation is required or when the speed has decreased．	$F \mathrm{~F}$
$\left\lvert\, \begin{array}{\|c} \stackrel{\rightharpoonup}{\vec{N}} \\ \stackrel{n}{u} \end{array}\right.$	Overcurrent trip during acceleration	Appears when an overcurrent occurred during acceleration．	ESE
	Overcurrent trip during constant speed	Appears when an overcurrent occurred during constant speed operation．	ERİ
	Overcurrent trip during deceleration or stop	Appears when an overcurrent occurred during deceleration and at a stop．	E．OL
	Regenerative overvoltage trip during acceleration	Appears when an overvoltage occurred during acceleration．	ESい
	Regenerative overvoltage trip during constant speed	Appears when an overvoltage occurred during constant speed operation．	ESムO＇
	Regenerative overvoltage trip during deceleration or stop	Appears when an overvoltage occurred during deceleration and at a stop．	E高いう
	Inverter overload trip （electronic thermal relay function）	Appears when the electronic thermal relay function for inverter element protection was activated．	E． Hi^{-}
	Motor overload trip （electronic thermal relay function）＊1	Appears when the electronic thermal relay function for motor protection was activated．	E． 47
	Fin overheat	Appears when the heatsink overheated．	EFin
	Input phase loss＊7＊8＊9	Appears if one of the three phases on the inverter input side opened．It may function if phase－to－ phase voltage of the three－phase power input becomes largely unbalanced．	$E .1$ LF
	Stall prevention	Appears when the output frequency drops to 1 Hz as a result of deceleration due to the excess motor load．	E日G ${ }^{\circ}$
	Brake transistor alarm detection	This function stops the inverter output if an alarm occurs in the brake circuit，e．g．damaged brake transistors．In this case，the inverter must be powered off immediately．	E．bE
	Output side earth（ground）fault overcurrent at start＊7	Appears when an earth（ground）fault occurred on the inverter＇s output side．（detects only at a start）	E．EIF
	Output phase loss	If one of the three phases（ $\mathrm{U}, \mathrm{V}, \mathrm{W}$ ）on the inverter＇s output side（load side）is lost during inverter operation（except during DC injection brake operation and when output frequency is under 1 Hz ）， inverter stops the output．	E．LF
	External thermal relay operation＊6＊7	Appears when the external thermal relay connected to the OH signal was activated．	E．BHi
	PTC thermistor operation＊7	Appears when resistance of PTC thermistor connected between terminal 2 and terminal 10 is more than the value set in Pr． 561 PTC thermistor protection level．	EOFE
	Parameter storage device fault	Appears when operation of the element where parameters stored became abnormal．（control board）	E．PE
	PU disconnection	Appears when a communication error between the PU and inverter occurred，the communication interval exceeded the permissible time during the RS－485 communication with the PU connector，or communication errors exceeded the number of retries during the RS－485 communication．	E．PUE
	Retry count excess＊7	Appears when the operation was not restarted within the set number of retries．	E．rE＇
	CPU fault	Appears during the CPU and peripheral circuit errors occurred．	$\begin{array}{cc} E & 5 / \\ E M U \end{array}$
	Output current detection value exceeded $* 7$	Appears when output current exceeded the output current detection level set by the parameter．	ESdi
	Inrush current limit circuit fault	Appears when the resistor of the inrush current limit circuit overheated．	E． 8 B
	Analog input fault	Appears if voltage（current）is input to terminal 4 when the setting in Pr． 267 Terminal 4 input selection and the setting of voltage／current input switch are different．	ERIE
	Safety circuit fault	Appears when safety circuit is malfunctioning．	E．5RF

＊1 Resetting the inverter initializes the internal thermal integrated data of the electronic thermal relay function．
＊2 The error message shows an operational error．The inverter output is not shut off．
＊3 Warnings are messages given before fault occur．The inverter output is not shut off．
＊4 Alarms warn the operator of failures with output signals．The inverter output is not shut off．
$* 5$ When faults occur，the protective functions are activated to inverter trip and output the fault signals．
＊6 The external thermal operates only when the OH signal is set in Pr． 178 to Pr ． 182 （input terminal function selection）．
＊ 7 This protective function does not function in the initial status．
＊8 Protective function activates when Pr． 872 Input phase loss protection selection $=$＂ 1 ＂．
＊9 This protective function is available with the three－phase power input specification model only．

Option list

By fitting the following options to the inverter, the inverter is provided with more functions.

	Name	Type	Applications, Specifications, etc.	Applicable Inverter
	Parameter unit (8 languages)	$\begin{array}{\|l\|} \hline \text { FR-PU07 } \\ \text { FR-PU04 } \end{array}$	Interactive parameter unit with LCD display	Shared among all models
	Parameter unit with battery pack	FR-PU07BB(-L)	This parameter unit enables parameter setting without connecting the inverter to power supply.	Shared among all models (Available soon)
	Enclosure surface operation panel	FR-PA07	This operation panel enables inverter operation and monitoring of frequency, etc. from the enclosure surface	
	Parameter unit connection cable	FR-CB20]	Cable for connection of operation panel or parameter unit indicates a cable length. ($1 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$)	all models
	DIN rail attachment	FR-UDA01 to 03	Attachment for installation on DIN rail	Compatible with the 3.7 K or less
	AC reactor	FR-HAL	For harmonic current reduction and inverter input power factor improvement (total power factor approx. 88\%)	According to
	DC reactor	FR-HEL	For harmonic current reduction and inverter input power factor improvement (total power factor approx. 93\%)	capacities
	EMC Directive compliant noise filter	FR-E5NF	EMC Directive (EN61800-3 C3) compliant noise filter	400V: According to capacities
	Radio noise filter	FR-BIF(H)	For radio noise reduction (connect to the input side)	
	Line noise filter	$\begin{aligned} & \text { FR- BSF01 } \\ & \text { FR- BLF } \end{aligned}$	For line noise reduction	all models
	Filter pack	FR-BFP2	Combination of power factor improving DC reactor, zero phase reactor, and capacitative filter	Three-phase power input model: compatible with 0.4 K or bigger capacity
	Brake resistor	MRS type, MYS type	For increasing the regenerative braking capability (permissible duty 3\%/6\%ED)	200V: For the 0.4 K or more
	High-duty brake resistor	FR-ABR	For increasing the regenerative braking capability (permissible duty 10\%/ 6\%ED)	
	Brake unit Resistor unit Discharging resistor	FR-BU2 FR-BR GZG, GRZG type	For increasing the braking capability of the inverter (for high-inertia load or negative load) Brake unit, electrical-discharge resistor and resistor unit are used in combination	For the 0.4 K or more
	Power regeneration common converter Stand-alone reactor dedicated for the FR-CV	$\begin{aligned} & \text { FR-CV } \\ & \text { FR-CVL } \end{aligned}$	Unit which can return motor-generated braking energy back to the power supply in common converter system	According to
	High power factor converter	FR-HC	The high power factor converter switches the converter section on/off to reshape an input current waveform into a sine wave, greatly suppressing harmonics. (Used in combination with the standard accessory.)	
	Surge voltage suppression filter	FR-ASF		400V: According to capacities
		FR-BMF	Filter for suppressing surge voltage on motor	400V: For the 5.5K or more
	Manual controller	FR-AX	For independent operation. With frequency meter, frequency potentiometer and start switch.	Shared among all models
	DC tach. follower	FR-AL	For synchronous operation (1.5VA) by external signal (0 to 5V, 0 to 10V DC)*	
	Three speed selector	FR-AT	For three speed switching, among high, middle and low speed operation (1.5VA)*	
	Motorized speed setter	FR-FK	For remote operation. Allows operation to be controlled from several places (5VA)*	
	Ratio setter	FR-FH	For ratio operation. The ratios of five inverters can be set (3VA)*	
	Speed detector	FR-FP	For tracking operation by a pilot generator (PG) signal (3VA)*	
	Master controller	FR-FG	Master controller (5VA) for parallel operation of multiple (maximum 35) inverters.*	
	Soft starter	FR-FC	For soft start and stop. Enables acceleration/deceleration in parallel operation (3VA)*	
	Deviation detector	FR-FD	For continuous speed control operation. Used in combination with a deviation sensor or synchro (5VA)*	
	Preamplifier	FR-FA	Used as an A/V converter or arithmetic amplifier (3VA)*	
	Pilot generator	QVAH-10	For tracking operation. $70 \mathrm{~V} / 35 \mathrm{VAC} 500 \mathrm{~Hz}$ (at $2500 \mathrm{r} / \mathrm{min}$)	
	Deviation sensor	YVGC-500W-NS	For continuous speed control operation (mechanical deviation detection) Output 90VAC $/ 90^{\circ} \mathrm{C}$	
	Frequency setting potentiometer	WA2W 1k Ω	For frequency setting. Wire-wound 2W $1 \mathrm{k} \Omega$ type B characteristic	
	Analog frequency meter ($64 \mathrm{~mm} \times 60 \mathrm{~mm}$)	YM206NRI 1mA	Dedicated frequency meter (graduated to 120 Hz). Moving-coil type DC ammeter	
	Calibration resistor	RV24YN 10k Ω	For frequency meter calibration. Carbon film type B characteristic	
	FR Configurator SW3(VFD setup software)	FR-SW3-SETUPWE	Supports an inverter startup to maintenance.	Shared among all models

* Rated power consumption. The power supply specifications of the FR series manual controllers and speed controllers are $200 \mathrm{VAC} 50 \mathrm{~Hz}, 220 \mathrm{~V} / 220 \mathrm{VAC} 60 \mathrm{~Hz}$, and 115 VAC 60 Hz .

Peripheral devices/cable size list

Inverter type		Motor Output (kW)	Moulded Case Circuit Breaker (MCCB)*1 or Earth Leakage Current Breaker (ELB)*2 Reactor connection		Magnetic Contactor (MC) $* 3$ Reactor connection		HIV Cables, etc. $\left(\mathrm{mm}^{2}\right) * 5$		Reactor		
		Without	With	Without	With		U, V, W	FR-HAL	FR-HEL		
	FR-D720-0.1K		0.1	30AF 5A	30AF 5A	S-N10	S-N10	2	2	$0.4 \mathrm{~K} * 7$	$0.4 \mathrm{~K} * 7$
	FR-D720-0.2K	0.2	30AF 5A	30AF 5A	S-N10	S-N10	2	2	$0.4 \mathrm{~K} * 7$	0.4K*7	
	FR-D720-0.4K	0.4	30AF 5A	30AF 5A	S-N10	S-N10	2	2	0.4 K	0.4 K	
	FR-D720-0.75K	0.75	30AF 10A	30AF 5A	S-N10	S-N10	2	2	0.75K	0.75K	
	FR-D720-1.5K	1.5	30AF 15A	30AF 10A	S-N10	S-N10	2	2	1.5K	1.5K	
	FR-D720-2.2K	2.2	30AF 20A	30AF 15A	S-N10	S-N10	2	2	2.2 K	2.2K	
	FR-D720-3.7K	3.7	30AF 30A	30AF 30A	S-N20, S-N21	S-N10	3.5	3.5	3.7K	3.7K	
	FR-D720-5.5K	5.5	50AF 50A	50AF 40A	S-N20, S-N21	S-N20, S-N21	5.5	5.5	5.5K	5.5K	
	FR-D720-7.5K	7.5	100AF 60A	50AF 50A	S-N25	S-N20, S-N21	14	8	7.5K	7.5K	
	FR-D740-0.4K	0.4	30AF 5A	30AF 5A	S-N10	S-N10	2	2	H0.4K	H0.4K	
	FR-D740-0.75K	0.75	30AF 5A	30AF 5A	S-N10	S-N10	2	2	H0.75K	H0.75K	
	FR-D740-1.5K	1.5	30AF 10A	30AF 10A	S-N10	S-N10	2	2	H1.5K	H1.5K	
	FR-D740-2.2K	2.2	30AF 15A	30AF 10A	S-N10	S-N10	2	2	H2.2K	H2.2K	
	FR-D740-3.7K	3.7	30AF 20A	30AF 15A	S-N10	S-N10	2	2	H3.7K	H3.7K	
	FR-D740-5.5K	5.5	30AF 30A	30AF 20A	S-N20, S-N21	S-N11, S-N12	3.5	2	H5.5K	H5.5K	
	FR-D740-7.5K	7.5	30AF 30A	30AF 30A	S-N20, S-N21	S-N20, S-N21	3.5	3.5	H7.5K	H7.5K	
	FR-D720S-0.1K	0.1	30AF 5A	30AF 5A	S-N10	S-N10	2	2	0.4K * 7	0.4K*7	
	FR-D720S-0.2K	0.2	30AF 5A	30AF 5A	S-N10	S-N10	2	2	$0.4 \mathrm{~K} * 7$	$0.4 \mathrm{~K} * 7$	
	FR-D720S-0.4K	0.4	30AF 10A	30AF 10A	S-N10	S-N10	2	2	$0.75 \mathrm{~K} * 7$	$0.75 \mathrm{~K} * 7$	
	FR-D720S-0.75K	0.75	30AF 15A	30AF 10A	S-N10	S-N10	2	2	1.5K*7	1.5K*7	
	FR-D720S-1.5K	1.5	30AF 20A	30AF 20A	S-N10	S-N10	2	2	$2.2 \mathrm{~K} * 7$	$2.2 \mathrm{~K} * 7$	
	FR-D720S-2.2K	2.2	30AF 40A	30AF 30A	S-N20, S-N21	S-N10	3.5	2	$3.7 \mathrm{~K} * 7$	$3.7 \mathrm{~K} * 7$	
	FR-D710W-0.1K	0.1	30AF 10A	30AF 5A	S-N10	S-N10	2	2	$0.75 \mathrm{~K} * 6, * 7$	-*8	
	FR-D710W-0.2K	0.2	30AF 10A	30AF 10A	S-N10	S-N10	2	2	$1.5 \mathrm{~K} * 6, * 7$	-*8	
	FR-D710W-0.4K	0.4	30AF 15A	30AF 15A	S-N10	S-N10	2	2	$2.2 \mathrm{~K} * 6, * 7$	-*8	
	FR-D710W-0.75K	0.75	30AF 30A	30AF 20A	S-N10	S-N10	3.5	2	$3.7 \mathrm{~K} * 6, * 7$	-*8	

*1 Select an MCCB according to the inverter power supply capacity
Install one MCCB per inverter.
*2 For installations in the United States or Canada, use the class T type fuse certified by the UL and cUL.
*3 Magnetic contactor is selected based on the AC-1 class. The electrical durability of magnetic contactor is 500,000 times. When the magnetic contactor is used for emergency stop during motor driving, the electrical durability is 25 times.
When using the MC for emergency stop during motor driving or using on the motor side during commercial-power supply operation, select the MC with class AC-3 rated current for the motor rated current.
*4 When using single-phase power input, terminals are R/L1 and S/L2.
*5 The cable size is that of the cable (HIV cable (600 V class 2 vinyl-insulated cable) etc.) with continuous maximum permissible temperature of $75^{\circ} \mathrm{C}$. Assumes that the surrounding air temperature is $50^{\circ} \mathrm{C}$ or less and the wiring distance is 20 m or less.
*6 When connecting a single-phase 100 V power input model to a power transformer (50 kVA or more), install an AC reactor (FR-HAL) so that the performance is more reliable.
*7 The power factor may be slightly lower.
*8 Single-phase 100 V power input model is not compatible with DC reactor.

Note

- When the inverter capacity is larger than the motor capacity, select an MCCB and a magnetic contactor according to the inverter type and cable and reactor according to the motor output.
When the breaker on the inverter primary side trips, check for the wiring fault (short circuit), damage to internal parts of the inverter, etc. Identify the cause of the trip, then remove the cause and power on the breaker.

Selecting the rated sensitivity current for the earth leakage current breaker

When using the earth leakage current breaker with the inverter circuit, select its rated sensitivity current as follows, independently of the PWM carrier frequency.

- Breaker designed for harmonic and surge suppression

Rated sensitivity current $\operatorname{I} \mathrm{n} \geq 10 \times(\lg 1+\lg n+\lg i+\lg 2+\operatorname{lgm})$

- Standard breaker

Rated sensitivity current $I \Delta n \geq 10 \times\{\lg 1+\lg n+\lg i+3 X(\lg 2+\lg m)\}$
Ig1, Ig2: Leakage currents in wire path during commercial power supply operation
ign : Leakage current of inverter input side noise filter
gm : Leakage current of motor during commercial power supply operation Igi : Leakage current of inverter unit

Example of leakage current of cable path per 1 km during the commercial power supply operation when the CV cable is routed in metal conduit (200V 60Hz)

Example of leakage current per 1 km during the commercial power supply operation when the CV cable is routed in metal conduit
(Three-phase three-wire delta
connection 400 V 60 Hz)

Example of leakage current
of three-phase induction motor during the commercial power supply operation (200V 60Hz)

Example of leakage current of threephase induction motor during the commercial power supply operation (Totally-enclosed fan-cooled type motor 400 V 60 Hz)

Example

(Note) 1 Install the earth leakage breaker (ELB) on the input side of the inverter
2 In the 人 connection earthed-neutral system, the sensitivity current is blunt against an earth (ground) fault in the inverter output side. Earthing (Grounding) must conform to the requirements of national and local safety regulations and electrical codes. (NEC section 250, IEC 536 class 1 and other applicable standards)

- Selection example
(in the case of the above figure (400 V class λ connection))

	Breaker Designed for Harmonic and Surge Suppression	Standard Breaker
Leakage current $\lg 1$ (mA)	$\frac{1}{3} \times 66 \times \frac{5 r}{100}$	$n_{n}=0.11$
Leakage current $\operatorname{lgn}(\mathrm{mA})$	0 (without noise filter)	
Leakage current Igi (mA)	1	
Leakage current $\lg 2(\mathrm{~mA})$	$\frac{1}{3} \times 66 \times \frac{60 \mathrm{~m}}{1000 \mathrm{~m}}=1.32$	
Motor leakage current Igm (mA)	0.36	
Total leakage current (mA)	2.79	6.15
Rated sensitivity current (mA) ($\geq \lg \times$ 10)	30	100

Precautions for use of the inverter

\. Safety Precautions

- To operate the inverter correctly and safely, be sure to read the "instruction manual" before starting operation.
- This product has not been designed or manufactured for use with any equipment or system operated under life-threatening conditions.
- Please contact our sales office when you are considering using this product in special applications such as passenger mobile, medical, aerospace, nuclear, power or undersea relay equipment or system.
- Although this product is manufactured under strict quality control, safety devices should be installed when a serious accident or loss is expected by a failure of this product.
- The load used should be a three-phase induction motor only.

Operation

- A magnetic contactor (MC) provided on the input side should not be used to make frequent starts and stops. It could cause the inverter to fail.
- However, at this time, the motor cannot be brought to a sudden stop. Hence, provide a mechanical stopping/holding mechanism for the machine/equipment which requires an emergency stop.
- It will take time for the capacitor to discharge after shutoff of the inverter power supply. When accessing the inverter for inspection, wait for at least 10 minutes after the power supply has been switched off, and check to make sure that there are no residual voltage using a tester or the like.

Wiring

- Application of power to the output terminals (U, V, W) of the inverter will damage the inverter. Therefore, fully check the wiring and sequence to ensure that wiring is correct, etc. before powering on.
- The terminals P/+, PR, P1, N/- are provided for connection of a dedicated option. Connect only a dedicated option. Do not short the frequency setting power supply terminal 10 and common terminal 5 or the terminal PC and terminal SD.

Power supply

- When the inverter is connected under a large-capacity power transformer (500kVA or more transformer) or when a power capacitor is to be switched over, an excessive peak current may flow in the power input circuit,
 damaging the inverter.
To prevent this, always install an optional AC reactor (FR-HAL). When connecting a single-phase 100 V power input model to a power transformer (50kVA or more), install an AC reactor (FRHAL) so that the performance is more reliable.
- If a surge voltage occurs in the power supply system, this surge energy may flow into the inverter, causing the inverter to display overvoltage protection (E.OV \square) and come to an inverter trip. To prevent this, always install an optional AC reactor (FR-HAL).

Installation

- Avoid hostile environment where oil mist, fluff, dust particles, etc. are suspended in the air, and install the inverter in a clean place or put it in an ingress-protected "enclosed" enclosure. When placing the inverter in an enclosure, determine the cooling system and panel dimensions so that the surrounding air temperature of the inverter is within the permissible value. (refer to page 7 for the specified value)
- Do not install the inverter on wood or other combustible material as it will be hot partly.
- Install the inverter in the vertical orientation

Setting

- The inverter can be operated as fast as a maximum of 400 Hz by parameter setting. Therefore, incorrect setting can cause a danger. Set the upper limit using the maximum frequency limit setting function.
- A setting higher than the initial value of DC injection brake operation voltage or operation time can cause motor overheat (electronic thermal relay error).
- Do not set Pr. 70 Special regenerative brake duty except for using the optional brake resistor. This function is used to protect the brake resistor from overheating. Do not set the value exceeding permissible duty of the brake resistor.

EPRERBOLDTOOSEMIES

Precautions for selection

Inverter capacity selection

- When operating a special motor or more than one motor in parallel with a single inverter, select the inverter capacity so that 1.1 times the total rated motor current is less than the rated output current of the inverter.

Starting torque of the motor

- The start and acceleration characteristics of the motor driven by the inverter are restricted by the overload current rating of that inverter. Generally the torque characteristic is less than when the motor is started by a commercial power supply. If torque boost adjustment or general-purpose magnetic flux vector control cannot provide enough torque when a large starting torque is necessary, select the inverter of one rank higher capacity or increase the capacities of both the motor and inverter.

Acceleration/deceleration times

- The acceleration/deceleration time of the motor depends on the motor-generated torque, load torque and moment of inertia of the load (J).
- When the stall prevention function is activated during acceleration/deceleration, increase the acceleration/ deceleration time as the actual time may become longer.
- To decrease the acceleration/deceleration time, increase the torque boost value (setting of a too large value may activate the stall prevention function at a start, longer the acceleration time), use the general-purpose magnetic flux vector control or increase the inverter and motor capacities. To decrease the deceleration time, it is necessary to add optional brake resistor MRS type, MYS type, FR-ABR (for the 0.4 K or more), the brake unit (FR-BU2), power regeneration common converter (FR-CV), or a similar device to absorb braking energy.

Power transfer mechanism

(reduction gear, belt, chain, etc.)

- When an oil-lubricated gear box, speed change/reduction gear or similar device is used in the power transfer system, note that continuous operation at low speed only may deteriorate oil lubrication, causing seizure. When performing fast operation at higher than 60 Hz , fully note that such operation will cause strength shortage due to the noise, life or centrifugal force of the power transfer mechanism.

Instructions for overload operation

- When performing operation of frequent start/stop of the inverter, rise/fall in the temperature of the transistor element of the inverter will repeat due to a repeated flow of large current, shortening the life from thermal fatigue. Since thermal fatigue is related to the amount of current, the life can be increased by reducing current at locked condition, starting current, etc. Decreasing current may increase the life. However, decreasing current will result in insufficient torque and the inverter may not start. Therefore, choose the inverter which has enough allowance for current.

Installation and selection of moulded case circuit breaker

Install a moulded case circuit breaker (MCCB) on the power receiving side to protect the wiring of the inverter input side. For MCCB selection, refer to page 25 since it depends on the inverter power supply side power factor (which changes depending on the power supply voltage, output frequency and load). Especially for a completely electromagnetic MCCB, one of a slightly large capacity must be selected since its operation characteristic varies with harmonic currents. (Check it in the data of the corresponding breaker.) As an earth leakage current breaker, use the Mitsubishi earth leakage current breaker designed for harmonics and surge suppression. (Refer to page 26)
When installing a moulded case circuit breaker on the output side of the inverter, contact each manufacturer for selection of the moulded case circuit breaker.

Handling of the inverter input side magnetic contactor

- For operation via external terminal (terminal STF or STR used), provide an input side MC to prevent an accident caused by a natural restart at power recovery after a power failure, such as an instantaneous power failure, and to ensure safety for maintenance work. Do not use this magnetic contactor to make frequent starts and stops. (The switching life of the inverter input circuit is about 1,000,000 times.) For parameter unit operation, an automatic restart after power failure is not made and the MC cannot be used to make a start. Note that the primary side MC may be used to make a stop but the regenerative brake specific to the inverter does not operate and the motor is coasted to a stop.
- Installation of a magnetic contactor on the primary side is recommended. Since when cycle operation or heavy-duty operation is performed with an optional brake resistor connected, overheat and burnout of the electrical-discharge resistor can be prevented if a regenerative brake transistor is damaged due to insufficient heat capacity of the electricaldischarge resistor and excess regenerative brake duty. In this case, shut-off the magnetic contactor when fault occurs and inverter trips.

Handling of the inverter output side magnetic contactor

Switch the magnetic contactor between the inverter and motor only when both the inverter and motor are at a stop. When the magnetic contactor is turned on while the inverter is operating, overcurrent protection of the inverter and such will activate. When an MC is provided for switching to the commercial power supply, for example, switch it on/off after the inverter and motor have stopped.

Thermal relay installation

The inverter has an electronic thermal relay function to protect the motor from overheating. However, when running multiple motors with one inverter or operating a multi-pole motor, provide a thermal relay (OCR) between the inverter and motor. In this case, set the electronic thermal relay function of the inverter to 0A. And for the setting of the thermal relay, add the line-to line leakage current (refer to page 30) to the current value on the motor rating plate. For low-speed operation where the cooling capability of the motor reduces, it is recommended to use a thermal relay protector incorporated motor.

Measuring instrument on the output side

When the inverter-to-motor wiring length is large, especially in the 400 V class, small-capacity models, the meters and CTs may generate heat due to line-to-line leakage current. Therefore, choose the equipment which has enough allowance for the current rating.

Disuse of power factor improving capacitor (power capacitor)

The power factor improving capacitor and surge suppressor on the inverter output side may be overheated or damaged by the harmonic components of the inverter output. Also, since an excessive current flows in the inverter to activate overcurrent protection, do not install a capacitor or surge suppressor. For power factor improvement, use a DC reactor.

Wire thickness and wiring distance

When the wiring length between the inverter and motor is long, use thick wires so that the voltage drop of the main circuit cable is 2% or less especially at low frequency output. (A selection example for the wiring distance of 20 m is shown on page 25)
Especially at a long wiring distance, the maximum wiring length should be within the length in the table below since the overcurrent protection function may be misactivated by the influence of a charging current due to the stray capacitances of the wiring.
(The overall wiring length for connection of multiple motors should be within the value in the table below.)

Pr. 72 Setting (carrier frequency)	$\mathbf{0 . 1 K}$	$\mathbf{0 . 2 K}$	$\mathbf{0 . 4 K}$	$\mathbf{0 . 7 5 K}$	$\mathbf{1 . 5 K}$	$\mathbf{2 . 2 K}$	3.7 K or more	
	100 V							
	200 V	200 m	200 m	300 m	500 m	500 m	500 m	500 m
	400 V	-	-	200 m	200 m	300 m	500 m	500 m
2 to 15	100 V 200 V	30 m	100 m	200 m	300 m	500 m	500 m	500 m
	400 V	-	-	30 m	100 m	200 m	300 m	500 m

When using the automatic restart after instantaneous power failure function with wiring length exceeding below, select "without frequency search" (Pr. $162=$ "1, 11").

Motor Capacity	$\mathbf{0 . 1 K}$	$\mathbf{0 . 2 K}$	$\mathbf{0 . 4 K}$ or more
Wiring Length	20 m	50 m	100 m

Use the recommended connection cable when connecting the parameter unit.
For remote operation via analog signal, wire the control cable between the operation box or operation signal and inverter within 30 m and away from the power circuits (main circuit and relay sequence circuit) to prevent induction from other devices.
When using the external potentiometer instead of the parameter unit to set the frequency, use a shielded or twisted cable, and do not earth (ground) the shield, but connect it to terminal 5 as shown below.

Earth (Ground)

When the inverter is run in the low acoustic noise mode, more leakage currents occur than in the non-low acoustic noise mode due to high-speed switching operation. Be sure to earth (ground) the inverter and motor before use. In addition, always use the earth (ground) terminal of the inverter to earth (ground) the inverter. (Do not use the case and chassis)

Noise

When performing low-noise operation at higher carrier frequency, electromagnetic noise tends to increase. Therefore, refer to the following measure example and consider taking the measures. Depending on the installation condition, the inverter may be affected by noise in a non-low noise (initial) status.

- The noise level can be reduced by decreasing the carrier frequency (Pr. 72).
- As measures against AM radio broadcasting noise, radio noise filter FR-BIF produces an effect.
- As measures against sensor malfunction, line noise filter FRBSF01, FR-BLF produces an effect.
- As measures against induction noise from the power cable of the inverter, an effect is produced by putting a distance of 30 cm (at least 10 cm) or more and using a twisted pair shielded cable as a signal cable. Do not earth (ground) shield but connect it to signal common cable.

Noise reduction examples

Leakage currents

Capacitances exist between the inverter I/O cables, other cables and earth and in the motor, through which a leakage current flows. Since its value depends on the static capacitances, carrier frequency, etc., low acoustic noise operation at the increased carrier frequency of the inverter will increase the leakage current. Therefore, take the following measures. Select the earth leakage current breaker according to its rated sensitivity current, independently of the carrier frequency setting. (Refer to page 26)

To-earth (ground) leakage currents

Type	Influence and Measures
Influence and measures	- Leakage currents may flow not only into the inverter's own line but also into the other line through the earth (ground) cable, etc. These leakage currents may operate earth (ground) leakage circuit breakers and earth leakage relays unnecessarily. - Countermeasures - If the carrier frequency setting is high, decrease the $P r$. 72 PWM frequency selection setting. Note that motor noise increases. Select Pr. 240 SoftPWM operation selection to make the sound inoffensive. - By using earth leakage circuit breakers designed for harmonic and surge suppression in the inverter's own line and other line, operation can be performed with the carrier frequency kept high (with low noise).
Undesirable current path	

Line leakage current

Type	Influence and Measures
Influence and measures	- This leakage current flows via a static capacitance between the inverter output cables. - The external thermal relay may be operated unnecessarily by the harmonics of the leakage current. When the wiring length is long (50 m or more) for the 400 V class model, the external thermal relay is likely to operate unnecessarily because the ratio of the leakage current to the rated motor current increases. - Countermeasures - Use Pr. 9 Electronic thermal O/L relay. - If the carrier frequency setting is high, decrease the Pr. 72 PWM frequency selection setting. Note that motor noise increases. Select Pr. 240 Soft-PWM operation selection to make the sound inoffensive. To ensure that the motor is protected against line-toline leakage currents, it is recommended to use a temperature sensor to directly detect motor temperature.
Undesirable current path	

- Harmonic suppression guideline

Harmonic currents flow from the inverter to a power receiving point via a power transformer. The harmonic suppression guideline was established to protect other consumers from these outgoing harmonic currents.
The three-phase 200 V input specifications 3.7 kW or less, singlephase 200 V input specifications 2.2 kW or less, single-phase 100 V input specifications 0.75 kW or less are previously covered by "Harmonic suppression guideline for household appliances and general-purpose products" and other models are covered by "Harmonic suppression guideline for consumers who receive high voltage or special high voltage". However, the transistorized inverter has been excluded from the target products covered by "Harmonic suppression guideline for household appliances and general-purpose products" in January 2004 and "Harmonic suppression guideline for household appliances and generalpurpose products" was repealed on September 6, 2004.
All capacity and all models of general-purpose inverter used by specific consumers are covered by "Harmonic suppression guideline for consumers who receive high voltage or special high voltage".

- "Harmonic suppression guideline for consumers who receive high voltage or special high voltage"
This guideline sets forth the maximum values of harmonic currents outgoing from a high-voltage or especially high-voltage consumer who will install, add or renew harmonic generating equipment. If any of the maximum values is exceeded, this guideline requires that consumer to take certain suppression measures.
Users who use models other than the target models are not covered by the guideline. However, we ask to connect an AC reactor or a DC reactor as before to the users who are not covered by the guideline. For compliance to the harmonic suppression guideline for consumers who receive high voltage or special high voltage

Input Power Supply	Target Capacity	Countermeasures
Single-phase 100 V Single-phase 200 V Three-phase 200 V Three-phase 400 V	All capacities	Make a judgment based on "Harmonic suppression guideline for consumers who receive high voltage or special high voltage" issued by the Japanese Ministry of Economy, Trade and Industry (formerly Ministry of International Trade and Industry) in September 1994 and take measures if necessary. For calculation method of power supply harmonics, refer to materials below. Reference materials - "Harmonic suppression measures of the inverter" Jan. 2004 Japan Electrical Manufacturer's Association - "Calculation method of harmonic current of the general-purpose inverter used by specific consumers" JEM-TR201 (revised in Dec. 2003): Japan Electrical Manufacturer's Association Japan Electrical Manufacturer's Association

For compliance to "Harmonic suppression guideline of the transistorized inverter (input current of 20A or less) for consumers other than specific consumers" published by JEMA.

Input Power Supply	Target Capacity	Countermeasures

- Calculation of outgoing harmonic current

Outgoing harmonic current $=$ fundamental wave current (value converted from received power voltage) \times operation ratio \times harmonic content

- Operation ratio: Operation ratio = actual load factor operation time ratio during 30 minutes
- Harmonic content: Found in Table.

Table 1: Harmonic Contents (Values at the fundamental current of 100\%)

	Reactor	5th	7th	11th	13th	17th	19th	23rd	25th
Three-phase bridge (Capacitor smoothing)	Not used	65	41	8.5	7.7	4.3	3.1	2.6	1.8
	Used (AC side)	38	14.5	7.4	3.4	3.2	1.9	1.7	1.3
	Used (DC side)	30	13	8.4	5.0	4.7	3.2	3.0	2.2
	Used (AC, DC sides)	28	9.1	7.2	4.1	3.2	2.4	1.6	1.4
Single-phase bridge (Capacitor smoothing)	Not used	50	24	5.1	4.0	1.5	1.4	-	-
	Used (AC side) *	6.0	3.9	1.6	1.2	0.6	0.1	-	-

* The harmonic contents for "single-phase bridge/with reactor" in the table 1 are values when the reactor value is 20%. Since a 20% reactor is large and considered to be not practical, harmonic contents when a 5% reactor is used is written in the technical data JEM-TR201 of The Japan Electrical Manufacturers'
Association and this value is recommended for calculation for the actual practice.

Table 2: Rated Capacities and Outgoing Harmonic Currents for Three-phase Inverter Drive

	Rated Current [A]				Outgoing Harmonic Current Converted from $6.6 \mathrm{kV}(\mathrm{mA})$ (No reactor, 100\% operation ratio)							
ব	200V	400V			5th	7th	11th	13th	17th	19th	23rd	25th
0.4	1.61	0.81	49	0.57	31.85	20.09	4.165	3.773	2.107	1.519	1.274	0.882
0.75	2.74	1.37	83	0.97	53.95	34.03	7.055	6.391	3.569	2.573	2.158	1.494
1.5	5.50	2.75	167	1.95	108.6	68.47	14.20	12.86	7.181	5.177	4.342	3.006
2.2	7.93	3.96	240	2.81	156.0	98.40	20.40	18.48	10.32	7.440	6.240	4.320
3.7	13.0	6.50	394	4.61	257.1	161.5	33.49	30.34	16.94	12.21	10.24	7.092
5.5	19.1	9.55	579	6.77	376.1	237.4	49.22	44.58	24.90	17.95	15.05	10.42
7.5	25.6	12.8	776	9.07	504.4	318.2	65.96	59.75	33.37	24.06	20.18	13.97

Item	Japanese Specification	NA Specification	EC Specification	CHT Specification
Applicable Capacity Type	FR-D720-0.1K to 7.5 K FR-D740-0.4K to 7.5 K FR-D720S-0.1K to 2.2 K FR-D710W-0.1K to 0.75 K Type : Rated capacity (kW)	FR-D720-008 to 318-NA FR-D740-012 to 160-NA FR-D720S-008 to 100-NA FR-D710W-008 to 042-NA Type : Rated current value	FR-D740-012 to 160-EC FR-D720S-008 to 100-EC Type : Rated current value	FR-D740-0.4K to $7.5 \mathrm{~K}-\mathrm{CHT}$ FR-D720S-0.1K to $2.2 \mathrm{~K}-\mathrm{CHT}$ Type : Rated capacity (kW)
Main Circuit Terminal Name AC Power Input Three-phase Input	R, S, T		L1, L2, L3	
Single-phase Input	R, S		L1, N	
Brake Unit Connection	P, N		+, -	
Control Terminal Logic Initial Setting	Sink logic	Sink logic	Source logic	Sink logic
Control Terminal Contact Input Common Terminal Initial Setting	SD	SD	PC	SD
Monitor Output Terminal For Indicator	FM (Digital output)	AM (Analog output)	AM (Analog output)	AM (Analog output)
Parameter Pr.3, Pr.4, Pr.20, Pr.55, Pr.66, Pr.84, Pr.125, Pr.126, Pr.903, Pr.905, Pr. 923 Initial Value	60 Hz	60 Hz	50 Hz	50 Hz
Pr. 19 Initial Value	9999	9999	8888	9999
Pr. 145 Initial Value	0	1	1	1
Pr. 160 Initial Value	9999	0	9999	9999
Pr. 249 Initial Value	0	0	1	1
Indicator Output Terminal Function	Pr. 54 FM terminal function selection, Pr. 900 FM terminal calibration	Pr. 158 AM terminal function selection, Pr. 901 AM terminal calibration	Pr. 158 AM terminal function selection, Pr. 901 AM terminal calibration	Pr. 158 AM terminal function selection, Pr. 901 AM terminal calibration
Traverse Function Pr. 592 to Pr. 597	Without	Without	With	With

1. Gratis warranty period and coverage
[Gratis warranty period]
Note that an installation period of less than one year after installation in your company or your customer's premises or a period of less than 18 months (counted from the date of production) after shipment from our company, whichever is shorter, is selected.

[Coverage]

(1) Diagnosis of failure

As a general rule, diagnosis of failure is done on site by the customer.
However, Mitsubishi or Mitsubishi service network can perform this service for an agreed upon fee upon the customer's request.
There will be no charges if the cause of the breakdown is found to be the fault of Mitsubishi.
(2) Breakdown repairs

There will be a charge for breakdown repairs, exchange replacements and on site visits for the following four conditions even in gratis warranty period, otherwise there will be no charge.
1)Breakdowns due to improper storage, handling, careless accident, software or hardware design by the customer.
2)Breakdowns due to modifications of the product without the consent of the manufacturer.
3)Breakdowns resulting from using the product outside the specified specifications of the product.
4)Breakdowns that are outside the terms of warranty.

Since the above services are limited to Japan, diagnosis of failures, etc. are not performed abroad.
If you desire the after service abroad, please register with Mitsubishi. For details, consult us in advance.
2. Exclusion of opportunity loss from warranty liability

Regardless of the gratis warranty term, compensation to opportunity losses incurred to your company or your customers by failures of Mitsubishi products and compensation for damages to products other than Mitsubishi products and other services are not covered under warranty.
3. Repair period after production is discontinued

Mitsubishi shall accept product repairs for seven years after production of the product is discontinued.
4. Terms of delivery

In regard to the standard product, Mitsubishi shall deliver the standard product without application settings or adjustments to the customer and Mitsubishi is not liable for on site adjustment or test run of the product.

International FA Center

- North American FA Center

MITSUBISHI ELECTRIC AUTOMATION, INC.
500 Corporate Woods Parkway, Vernon Hills, IL60061 U.S.A
TEL. +1-847-478-2100 FAX. +1-847-478-0327

- Taiwan FA Center

SETSUYO ENTERPRISE CO., LTD.
6F No.105, Wu Kung 3rd RD, Wu-Ku Hsiang Taipei Hsien, 248, Taiwan
TEL. +886-2-2299-2499 FAX. +886-2-2299-2509

- Korean FA Center

MITSUBISHI ELECTRIC AUTOMATION KOREA CO., LTD.
B1F,2F, 1480-6, Gayang-Dong, Gangseo-Gu, Seoul, 157-200, Korea
TEL. +82-2-3660-9607 FAX. +82-2-3664-0475

- Beijing FA Center

MITSUBISHI ELECTRIC AUTOMATION (SHANGHAI) LTD. BEIJING OFFICE
9F Office Tower 1, Henderson Center, 18 Jianguomennei Avenue, Dongcheng District, Beijing, China 100005
TEL. +86-10-6518-8830 FAX. +86-10-6518-8030

- Tianjin FA Center

MITSUBISHI ELECTRIC AUTOMATION (SHANGHAI) LTD. TIANJIN OFFICE
B-2 801/802, Youyi Building, No. 50 Youyi Road, Hexi District, Tianjin, China 300061
TEL +86-22-2813-1015 FAX. +86-22-2813-1017

- Shanghai FA Center

MITSUBISHI ELECTRIC AUTOMATION (SHANGHAI) LTD.
4/F Zhi Fu Plazz, No. 80 Xin Chang Road, Shanghai, China 200003
TEL. +86-21-6121-2460 FAX. +86-21-6121-2424

- ASEAN FA Center

MITSUBISHI ELECTRIC ASIA PTE, LTD.
307 Alexandra Road \#05-01/02, Mitsubishi Electric Building, Singapore 159943
TEL. +65-6470-2480 FAX. +65-6476-7439

- Hong Kong FA Center

MITSUBISHI ELECTRIC AUTOMATION (Hong Kong) LTD. 10th Floor, Manulife Tower, 169 Electric Road, North Point, Hong Kong TEL.+852-2887-8870 FAX. +852-2887-7984

-European FA Center

MITSUBISHI ELECTRIC EUROPE B. V. GERMAN BRANCH
Gothaer Strasse 8, D-40880 Ratingen, Germany
TEL. +49-2102-486-0 FAX. +49-2102-486-1120
-UK FA Center
MITSUBISHI ELECTRIC EUROPE B. V. UK BRANCH
Travellers Lane, Hatfield, Hertfordshire, AL10 8XB, UK.
TEL. +44-1707-276100 FAX. +44-1707-278695

- Thailand FA Center

MITSUBISHI ELECTRIC AUTOMATION (THAILAND) CO., LTD. Bang-Chan Industrial Estate No.111, Soi Serithai 54, T.Kannayao, A.Kannayao, Bangkok 10230

TEL. +66-2-906-3238 FAX. +66-2-906-3239

- Guangzhou FA Center

MITSUBISHI ELECTRIC AUTOMATION (SHANGHAI) LTD. GUANGZHOU OFFICE
Rm.1609, North Tower, The Hub Center, No.1068, Xing Gang East Road, Haizhu District, Guangzhou, China 510335 TEL. +86-20-8923-6713 FAX. +86-20-8923-6715

- Central and Eastern Europe FA Center

MITSUBISHI ELECTRIC EUROPE B.V. CZECH BRANCH Avenir Business Park, Radlicka 714/113a,158 00 Praha 5, Czech Republic
TEL. +420-251-551-470 FAX. +420-251-551-471

[^0]: * Available function differs by the inverter. Please refer to the instruction manual of the inverter and the parameter unit.

