

Programmable Loop-Powered Temperature Measuring Transducer MCR-FL-T-LP-I

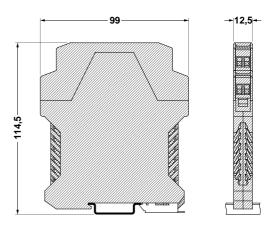
1. Brief Description

- For resistance thermometers, thermocouples, and resistance and voltage sensors
- Can be mounted on symmetrical EN 50 022 DIN rails
- Can be freely programmed using the MCR-PI-CONF-WIN configuration software (Order No. 28 14 79 9)

Universal PC programmable temperature measuring transducers convert temperature signals from resistance thermometers and thermocouples as well as sensors with linear mV characteristic curves to analog 4...20 mA signals.

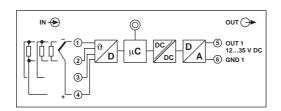
On the output side the temperature measuring transducers are operated in a 4...20 mA current loop, which simultaneously provides the module with the required power for signal conversion.

To change the configuration data, use the MCR-PAC-T programming adapter (Order No. 28 64 59 0) and the Windows-compatible MCR-PI-CONF-WIN configuration software (Order No. 28 14 79 9).


Customized measuring range settings and an extended setup can thus be implemented.

Failure information in the event of sensor breaks or sensor short circuit can be set according to NE 43. This measuring transducer maintains a high level of accuracy throughout the entire ambient operating temperature range.

The devices are supplied with the following default configuration: PT100 sensor, 0...100°C (32...212°F) measuring range, 3-wire termination.


Dimensional drawing for MCR-FL-T-LP-I

.1. Input Signals					
	Designation	Measuring Range Limits	Minimum Measuring Span		
Resistance thermometer (RTD)	Pt100 Pt500 Pt1000 according to IEC 751	-200 to +850°C (-328 to +1562°F) -200 to +250°C (-328 to +482°F) -200 to +250°C (-328 to +482°F)	10 K 10 K 10 K		
	Ni100 Ni500 Ni1000 according to DIN 43760	-60 to +250°C (-76 to +482°F) -60 to +150°C (-76 to +302°F) -60 to +150°C (-76 to +302°F)	10 K 10 K 10 K		
	 Connection type: 2, 3 or 4-wire termination With 2-wire termination, the cable resistance can be compensated (020 Ω). With 3 and 4-wire termination, sensor cable resistance up to a maximum of 40 Ω per cable Sensor current ≤ 0.6 mA 				
Resistance sensor	Resistance (Ω)	10 400 Ω 102000 Ω	10 Ω 100 Ω		
Thermocouple (TC)	Designation	Measuring Range Limits	Minimum Measuring Span		
	B (PtRh30-PtRh6) C (W5Re-W26Re) ¹⁾ D (W3Re-W25Re) ¹⁾ E (NiCr-CuNi) J (Fe-CuNi) K (NiCr-Ni) L (Fe-CuNi) ²⁾ N (NiCrSi-NiSi) R (PtRh13-Pt) S (PtRh10-Pt) T (Cu-CuNi) U (Cu-CuNi) ²⁾ MoRe5-MoRe41 ³⁾ according to IEC 584 Part 1	0 to +1820°C (+32 to +3308°F) 0 to +2320°C (+32 to +4208°F) 0 to +2495°C (+32 to +4523°F) -200 to +915°C (-328 to +1679°F) -200 to +1200°C (-328 to +2192°F) -270 to +1372°C (-454 to +2502°F) -200 to +900°C (-328 to +1652°F) -270 to +1368°C (+32 to +3214°F) -50 to +1768°C (+32 to +3214°F) -200 to +400°C (-328 to +1752°F) -200 to +400°C (-328 to +1752°F) -200 to +600°C (-328 to +752°F) -200 to +600°C (-328 to +1112°F) 0 to +2000°C (+32 to +3632°F)	500 K 500 K 500 K 50 K 50 K 50 K 50 K 50		
	Cold junction: internal (Pt100) or external (080°C [32176°F]) Cold junction accuracy: ±1 K				

¹⁾ According to ASTM E988 2) According to DIN 43710 3) No specification

2. Technical Data

MCR-FL-T-LP-I

Programmable loop-powered temperature measuring transducer

c**911** us

	solid	flexible		
	[r	nm ²]	AWG	
Connection data	0.2 - 1.75	0.2 - 1.75	24 - 15	

Description					
MCR temperature measuring transducer, for resistance					
thermometers thermocouples and resistance and voltage sensors					

Туре	Order No.	Pkt.
MCR-FL-T-LP-I	28 64 56 1	1

Technical Data

Input

- PT100, PT500, PT1000 and Ni100, Ni500, Ni1000 resistance thermometers, in 2, 3 or 4-wire technology, minimum measuring span of 10 K
- Thermocouple sensors (B, C, D, E, J, K, L, N, R, S, T, U); minimum measuring span of 50 K/500 K
- Linear mV signals from -10 mV to +100 mV; minimum measuring span of 5 mV
- Resistance sensor of 10 Ω to 400 Ω and 10 Ω to 2000 $\Omega;$ minimum measuring span of 10 $\Omega/100~\Omega$

Output
Output signal
Maximum output signal
Load

Output signal in the event of open circuit/short circuit 1)

Measuring range exceeded/not reached

4...20 mA/20...4 mA ≤ 23 mA (V_{Supply} - 12 V)/0.023 A, maximum ≤ 3.6 mA/≥ 21.0 mA

≤ 20.5 mA/≥ 3.8 mA (linear increase/drop)

Programmable Loop-Powered Temperature Measuring Transducer - MCR-FL-T-LP-I

General Data

Supply voltage

Maximum current consumption

Transmission error²) Resistance thermometer (RTD)

Thermocouple (TC)⁵⁾

Resistance sensor (Ω)

Voltage sensor (mV)

Influence of the ambient temperature (temperature drift)

Influence of the load4) Influence of the supply voltage⁴) Response time On delay

Test voltage Input/output

Ambient operating temperature range

Storage temperature Climatic category Condensation Degree of protection Mounting location Mounting position Resistance to shock and vibration Configuration Electromagnetic compatibility

· Noise emission and noise immunity

Housing material

< 3.5 mA 0.2 K or 0.08% (Pt100, Ni100), 0.5 K or 0.20% (Pt500, Ni500), 0.3 K or 0.12% (Pt1000, Ni1000) 0.5 K or 0.08% (K, J, T, E, L, U), typical, 1.0 K or 0.08% (N, C, D), typical,

2.0 K or 0.08% (S, B, R, MoRe5-MoRe41), typical

 $\pm 0.1 \Omega$ or 0.08% (10...400 Ω), $\pm 1.5~\Omega$ or 0.12% (10...2000 Ω) $\pm 20~\mu V$ or 0.08% (-10...100 mV)

12...35 V DC

• Resistance thermometer (RTD): Td = ± (15 ppm/K • maximum measuring range + 50 ppm/K • set measuring range) • Δϑ³)

• Pt100 resistance thermometer: Td = ± (15 ppm/K • (measuring range final value + 200) + 50 ppm/K • set measuring range) • $\Delta \vartheta^3$)

• Thermocouple (TC): Td = ± (50 ppm/K • maximum measuring range + 50 ppm/K • set measuring range) • Δϑ³)

 $< \pm 0.02\%/100 \Omega$ ≤ ±0.01%/V deviation of 24 V < 2 s

2 kV AC, 50 Hz, 1 minute -40°C...+85°C (-40°F...+185°F) -40 °C...+100°C (-40°F...+212°F) According to EN60 654-1, Class C

Permissible IP 20

On symmetrical EN 50 022 DIN rails

4 g/2...150 Hz according to IEC 60 068-2-6 Using MCR-PI-CONF-WIN configuration software package

C€ Conformance with EMC Directive 89/336/EEC EN 61 326-1 (IEC 1326) and NAMUR NE 21

Polyamide PA, unarmored

3. **C€** Conformance With EMC Directive 89/336/EEC

The measuring system meets the legal requirements of EU directives. Phoenix Contact indicates that the device has been successfully tested through the use of the C€ mark.

EMC (Electromagnetic Compatibility):

Noise immunity and noise emission according to EN 61 326-1 (IEC 1326) and NAMUR NE 21.

1)Not for thermocouples

2) % refers to the set measuring span.

3) $\Delta \vartheta = \text{Difference}$ between the ambient temperature and the reference condition

 $\frac{4}{2}$) All data refers to the measuring range final value of 20 mA

5) Influence of the internal cold junction Pt100 DIN IEC 751 KI.B

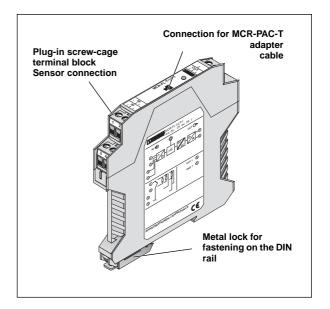
4. Connections

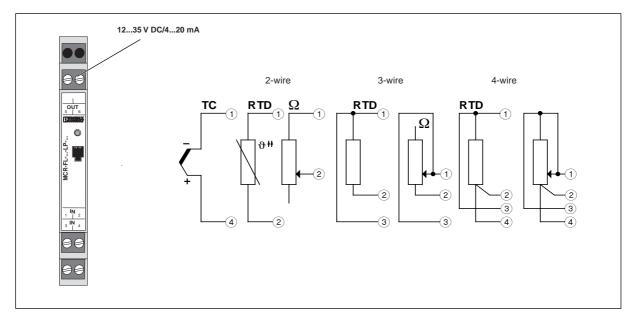
2-Wire Connection

For short distances.

Please note: The cable resistances directly affect the measuring result and falsify it, provided that they are not compensated by the software.

3-Wire Connection


For long distances between the resistance thermometer and the MCR module and equal cable resistances (R_{L1} = R_{L2} = R_{L3}).

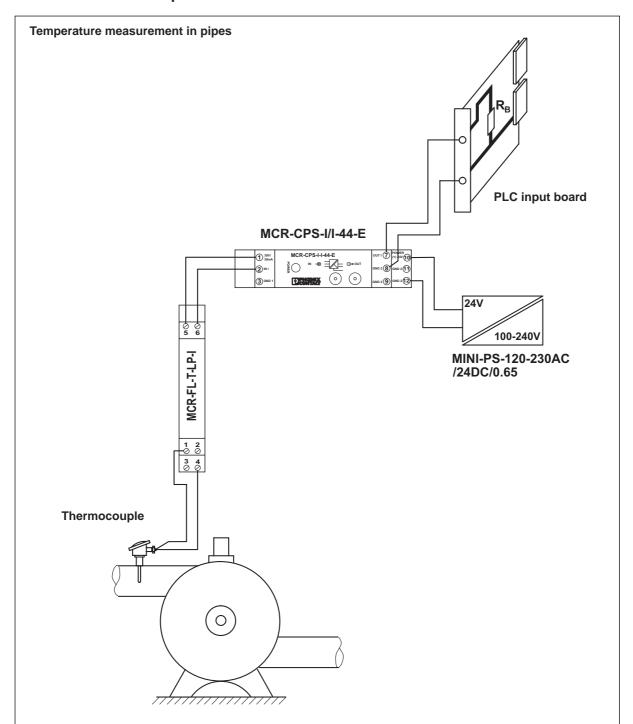

Please note: The cable resistance per wire must not exceed 40 Ω .

4-Wire Connection

For long distances between the resistance thermometer and the MCR module and varied cable resistances ($R_{1.1} \neq R_{1.2} \neq R_{1.3} \neq R_{1.4}$).

resistances (R_{L1} ≠ R_{L2} ≠ R_{L3} ≠ R_{L4}). Please note: The cable resistance per wire must not exceed 40 Ω . The permissible residual ripple is U_{pp} ≤ 5 V at U_b ≥ 15 V, and f_{max.} of 1 kHz.

5. Configuration


The devices are supplied with the following default configuration: PT100 sensor, 0...100°C (32...212°F) measuring range, 3-wire termination.

To change the configuration data, use the MCR-PAC-T programming adapter (Order No. 28 64 59 0) and the Windows-compatible MCR-PI-CONF-WIN configuration software (Order No. 28 14 79 9). Customized measuring range settings and an extended setup can be implemented. In addition, the online help explains the configuration options and their implementation.

Configurable Parameters:

- Sensor type and connection type
- Unit of measurement (°C/°F)
- Measuring ranges
- Internal/external cold junction
- Compensation of the cable resistance for 2-wire termination
- Errors
- Output signal (4...20mA/20...4mA)
- Attenuation
- Offset
- Designation for measuring points (8 characters)
- Output simulation

6. Connection Examples

